首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
The Delijan region of Central Iran is a popular tourist spot due to the occurrence of hot springs and having the greatest geothermal fields in Iran. In the years 2011 and 2012, an integrated geophysical investigation, using magnetic and gravity methods, was conducted over the hot springs in order to characterize geophysical anomaly sources corresponding to the geothermal resources. The results of the geophysical investigations revealed the heat source and the reservoir of the Delijan geothermal system (DGS). Based on results of Euler depth estimation and 3D inversion of magnetic and gravity data, the depths and extension of the discovered structures were determined with a good correlation with the geological information. The results of magnetic interpretation show that the main source (heat source) of the geothermal system is located NE of the Delijan-Abgarm fault (DAf) zone at depths of 2500 to 5000 m, and the results of gravity interpretation show that the reservoir of the geothermal system is located along the DAf zone at depths of 1000 to 4000 m. Also, the horizontal gradients of gravity data reveal complex fault systems which are acting as the preferential paths to circulate the hydrothermal fluids.  相似文献   

2.
Approximately 400,000 line kilometers of high quality, low level Arctic aeromagnetic data collected by the Naval Research Laboratory, the Naval Oceanographic Office and the Naval Ocean Reseach and Development Activity from 1972 through 1978 have been analyzed for depth to magnetic source. This data set covers much of the Canada Basin, the Alpha Ridge, the central part of the Makarov Basin, the Lincoln Sea, the Eurasia Basin west and south of the 55°E meridian and the Norwegian-Greenland Sea north of the Jan Mayen Fracture Zone. The analysis uses the autocorrelation algorithm developed by Phillips (1975, 1978) and based on the maximum entropy method of Burg (1967, 1968, 1975). The method is outlined, examples of various error analysis techniques shown and final results presented. Where possible, magnetic source depth estimates are compared with basement depths derived from seismic and bathymetric data.All major known bathymetric features, including Vesteris Bank and the Greenland, Molloy and Spitsbergen fracture zones, as well as the Mohns, Knipovich and Nansen spreading ridges and the Alpha Cordillera appear as regional highs in the calculated magnetic basement topography. Shallow basement was also found under the northeastern Yermak Plateau, the Morris Jesup Rise and under the southern (Greenland-Ellesmere Island) end of the Lomonsosov Ridge. Regional magnetic source deeps are associated with such bathymetric depressions as the Canada, Makarov, Amundsen, Nansen, Greenland and Lofoten basins; more localized magnetic basement deeps are found over the Molloy F.Z. deep and over the Mohns, Knipovich and Nansen rift valleys. A linear magnetic basement deep follows the extension of Nares Strait through the Lincoln Sea toward the Morris Jesup Rise, suggesting the continuation of the Nares Strait or Wegener F.Z. into the Lincoln Sea. A sharp drop in the regional magnetic source depths to the southeast of the Alpha Ridge suggests the Alpha Ridge is not connected to structures in northwest Ellesmere Island as previously postulated from high altitude aeromagnetic collected by Canadian workers. A regional deep under the east Greenland shelf west of the Greenland Escarpment suggests the presence of 5–10 km of post-Paleozoic sediments.  相似文献   

3.
This study presents analysis and interpretation of aeromagnetic data to construct subsurface structure maps and determine the depths to magnetic basement. Subsequent analysis steps are applied to the total magnetic intensity (TMI) data. These steps include Reduction to the Pole (RTP) map that was derived from the TMI map then subjected to spectral frequency analysis to isolate RTP map into high and low frequencies and determine pseudo-depth for each map from power spectrum in which there were two main average levels (interfaces) at depth 1.3 and 0.7 km for the deep-seated and near-surface magnetic structures, respectively. 3D Euler deconvolution technique is applied to calculate the depth to the magnetic contacts; the results show clustering of solutions, the shallow solutions are related to the outcrops less than 80 m from flight level, and the solutions which are related to sedimentary cover locations (Um al-Huweitat, Wasif, and Mohamed Rabah basins) are ranged between 200 and to more than 1100 m. Moreover, anomaly enhancement techniques such as tilt derivative (TD), horizontal tilt derivative (TDX), and source edge detect (SED) are applied to enhance shallow features, and determining structure element boundary for both shallow- and deep-seated anomalies and revealing possible faults such as 2D forward modeling are applied to selected profiles to adjust the interpreted structures and map the boundaries and basement relief of the three basins (Mohammed Rabah, Wasif, and Um al-Huweitat). The analysis shows that the study area is affected with network of dip–slip faults due to high shearing and compression stress which formed grabens and horsts at different depth levels in the study area. The trends of predominant faults related to deep-seated structures are NW–SE with depths ranged between 1 and 1.4 km and in regard to the shallow-seated structure, the predominant fault trends are NW–SE, NNW–SSE, and NNE–SSW with depths ranged between 0.3 and 0.8 km.  相似文献   

4.
航磁异常深部弱信号提取技术研究   总被引:1,自引:0,他引:1  
郭志馗 《地质与勘探》2015,51(6):1007-1015
磁异常通常是地下不同深度磁性地质体产生磁场的叠加,在规范高度的航磁测量结果中,深部磁性体所产生的异常通常表现为弱而平缓,其水平与垂向分辨率均较低,在航磁资料处理解释中难以有效捕获。因此,应用适当方法提取由深部地质体引起的弱磁信息是十分必要的。本文采用精度高且稳定的位场延拓技术将航磁异常向下延拓,可以稳定增强磁异常幅度,随着延拓面与场源之间距离的减小,浅成磁信号与深成磁信号的视深度差异将增大,在对数功率谱上可以将其区分,而后可利用匹配滤波方法将浅部信号剥离,从而得到深部弱信号,同时可计算深部弱信号的视深度。  相似文献   

5.
功率谱用于计算不同尺度磁性体场源深度的分析   总被引:1,自引:0,他引:1  
张先  赵丽 《物探与化探》2007,31(Z1):53-56
通过对北京地区航磁异常进行小波多尺度分解得到的细节异常和向上延拓得到的区域异常进行功率谱计算,对发现的问题进行分析。从理论模型试验及实际资料处理的分析中说明:功率谱用于计算水平尺度小于"窗口"的磁性体场源深度效果较好,而用于计算水平尺度大于"窗口"的区域构造的场源深度误差较大,并针对导致2种不同效果的原因进行了探讨。  相似文献   

6.
Petrographic and chemical analyses demonstrate that late Cenozoic mafic lavas from the Basin-Range Province, western United States, are predominantly alkali-olivine basalts. Associated with these lavas are lesser volumes of basaltic andesite which appear to be differentiates from the more primitive alkali basalts. Late Cenozoic basalts from adjacent regions (Columbia River Plateau, Snake River Plain, Yellowstone area, High Cascades and Sierra Nevada) are predominantly tholeiitic. This apparent petrologic provincialism is supported by complementary variations in heat flow, seismic velocities, crustal thickness, magnetic anomalies and geologic setting.Alkali-olivine basalts from Japan and eastern Australia are analogous to those from the Basin-Range province both in composition and tectonic environment. It is suggested that these lavas are the products of a unique environment characterized by high heat flow and a thin crust.Recent melting experiments on peridotites and basalts and measurements of heat flow allow limits to be placed on the depth of origin of Basin-Range alkali-olivine basalt magmas. It is proposed that these lavas are produced by partial melting (less than 20%) of peridotitic mantle material at depths between 40 and 60 km in response to an elevated geothermal gradient. The basaltic andesites may be derived from hydrous alkali basalt magma by fractionation at depths of 30 to 40 km.  相似文献   

7.
地下冰作为多年冻土区别于其他土体的显著特征,对寒区水文、生态环境和工程建设等都有深刻影响。为准确估算多年冻土层地下冰储量,基于黄河源区地貌及其成因类型,结合岩性组成、含水率等105个钻孔的野外实测数据,估算了黄河源区多年冻土层3.0~10.0 m深度范围内地下冰储量,并讨论了浅层地下冰的空间分布特征。研究结果表明:黄河源区多年冻土层3.0~10.0 m深度范围内地下冰总储量为(49.62±17.95) km3,平均单位体积含冰量为(0.293±0.107) m3/m3;在水平方向上,湖积湖沼平原、冰缘作用丘陵等地貌单元含冰量较高,而侵蚀剥蚀台地、冲洪积平原等地貌单元含冰量较低;在垂向上,多年冻土上限附近含冰量较高,并随深度呈减小的趋势。  相似文献   

8.
航磁异常包含了地下各磁性体的叠加效应,为了更好地进行异常分离,尝试利用小波多尺度分析方法进行航磁异常的分离,其能够将异常分解到多个不同尺度上,来反映不同深度场源体产生的异常,具有较好的分离效果,值得进一步推广使用。  相似文献   

9.
In the Barramiya area, the majority of gold deposits are generally related with the quartz veins that associated with shear zones cutting the crystalline basement rocks. The quartz vein system is controlled by shear zone and general faults. The present study is to delineate the general faults, shear zones, geological limits, and basement rock relief, using airborne magnetic and gravity data analysis at the Barramiya gold mine and surrounding area, Eastern Desert of Egypt. To achieve our goal, we have applied on magnetic and gravity data the following techniques: reduction to pole (RTP), analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolution, downward continuation, and source parameter imagining power spectrum techniques. The analytical signal used to map the types of rock boundaries. Tilt derivative and total horizontal derivative filters helped to delineate fractures and the contact zones of the formations that host the main Barramiya shear zone. 3D Euler deconvolution techniques helped to delineate the fault trends which represented at the following direction: NNE–SSW and NNW–SSE. The average depths of both regional and residual causes have been estimated by applying downward continuation, source parameter imagining, and power spectrum techniques. According to the results of the present study, the depth of the basement rocks is relatively high (~?80-m depth) in the western part of the study area and the basement rocks cropped out in the surface at the rest of the area. Our results are coinciding with the previous geological studies.  相似文献   

10.
The present study deals with the characterization of subsurface coal fires of East Basuria colliery in Jharia coal field, India using tilt derivative and downward continuation of magnetic data. Magnetic data processing methods such as diurnal correction, noise removal, reduction to pole, tilt derivative and downward continuation have been used to process the data and for the interpretation of results on the basis of magnetic properties of overlying materials which change with the temperature variation above or below the Curie temperature. Most of the magnetic anomalies are associated with coal fire and non-coal fire regions which are correlated with tilt-derivative anomaly and corresponding downward-continued anomaly at different depths. The subsequent surface and subsurface characteristics are explained with good agreement. Approximate source depth of principal anomaly inferred from tilt derivatives method are corroborated with multi-seam occurrences, mine working levels and surface manifestation which are also correlated well with 3D model of downward continued anomaly distribution.  相似文献   

11.
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of \(\sim \)0.70 \(\hbox {km}^{2}\) along 13 parallel lines at 50 m spacing. The data was acquired at \(\sim \)25 \(\hbox {m}\) spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25–40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of \(\sim \)15, \(~\sim \)25 and \(\sim \)40 \(\hbox {m}\), respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.  相似文献   

12.
New methods are presented for processing and interpretation of shallow marine differential magnetic data,including constructing maps of offshore total magnetic anomalies with an extremely high resolution of up to 1-2 nT,mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks,estimating depths to upper and lower boundaries of anomalous magnetic sources,and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km,with typical dimensions of 25-30 km.The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism.Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea,tectonic blocks with widths of 30-100 km,and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated.Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km.Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods,and drilling confirms that the anomalies are related to concentrations of hydrocarbon.Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra.The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.  相似文献   

13.
About eighty earthquakes, exclusively from the Hindukush region, which were recorded at Gauribidanur seismic array (GBA) have been used in the present study. Short periodP-wave recordings upto 36 seconds were processed using adaptive cross-correlation filtering technique. The main objective of this exercise was to examine the signal complexities and seismic ray direction anomalies of these earthquakes which have identical epicentral distances and a narrow azimuthal range from GBA but different focal depths from 10 to 240 km. Slowness anomalies of the order of 1–4 sec/deg and azimuthal anomalies upto 6° have been found in this case. These deviations have been attributed to the upper mantle region between source and the receiver. Analysis of the data reveals that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and scattering confined to the crust-upper mantle near source are mainly responsible for complexity of the observed signals as the transmission path of the ray tubes from turning point to the recording stations is practically the same.  相似文献   

14.
回线源瞬变电磁测深快速反演方法   总被引:4,自引:3,他引:4  
回线源瞬变电磁测深法(简称瞬变电磁法或TEM法)是以不接地回线为场源,在回线内、外测量电磁场的一种电磁测深方法,已经广泛用于固体矿产、工程地质和水文地质调查工作之中[1,2]。目前,回线源瞬变电磁法主要采用中心回线和重叠回线两种测量装置,测量回线内垂直磁场产生的感应电动势。“烟圈”反演方法是瞬变电磁反演的主要计算方法,“烟圈”反演利用地表瞬变电磁响应与某时刻电流源镜像等效原理,计算勘探深度和对应电阻率。这里给出了回线源瞬变电磁测深一维“烟圈”反演解释方法的基本原理、计算方法和应用实例。结果表明,一维“烟圈”反演解释结果纵向分辨率较高,能反映出地下电性变化情况,可以用于瞬变电磁测深资料解释工作。  相似文献   

15.
东营凹陷为超压富烃凹陷, 钻井揭示该凹陷现今大规模超压系统出现在始新统沙三-四段烃源岩层系.根据大量的钻杆测试(DST)数据, 实测沙三-四段砂岩异常高压的深度范围约在2 200~4 400 m, 剩余压力约为4~40 MPa, 压力系数为1.2~1.99.根据钻井和测井以及地震速度资料解释, 超压带钻井泥浆密度明显增加, 超压泥岩层具有偏离正常趋势的异常高声波时差测井响应和异常低地震层速度响应特征.综合解释超压系统顶界面埋深在2 200~2 900 m, 对应地温在90~120 ℃; 超压顶界面深度随着烃源岩层系顶界埋深的增加而增加.超压系统范围内烃源岩层系样品镜质体反射率(Ro)分布在0.5%~1.2%, 沙三中、下亚段-沙四上亚段成熟烃源岩(Ro为0.5%~1.2%)及其生油作用控制了超压分布的主体区域, 佐证了东营凹陷现今大规模超压发育区与烃源岩生油增压有成因联系; 成熟烃源岩的累积厚度、埋深及热成熟度是超压系统整体分布特征和超压发育幅度的主控因素; 断裂系统和输导性砂体对东营凹陷沙三-四段烃源岩层系中发育的大规模超压系统的分布特征和结构变化具有重要影响.   相似文献   

16.
The propagation of a fast magnetoacoustic shock wave the magnetosphere of a solar active region is considered the nonlinear geometrical acoustics approximation. The magnetic field is modeled as a subphotospheric magnetic dipole embedded in the radial field of the quiet corona. The initial parameters of the wave are specified at a spherical surface in the depths of the active region. The wave propagates asymmetrically and is reflected from regions of the strong magnetic field, which results in the radiation of the wave energy predominantly upwards. Substantial gradients in the Alfvén speed facilitate appreciable growth in the wave intensity. Non-linear damping of the wave and divergence of the wave front lead to the opposite effect. Analysis of the joint action of these factors shows that a fast magnetoacoustic perturbation outgoing from an active region can correspond to a shock wave of moderate intensity. This supports the scenario in which the primary source of the coronal wave is an eruptive filament that impulsively expands in the magnetosphere of an active region.  相似文献   

17.
恰功铁矿是近几年新发现的矿山,矿体的形态、大小、位置、产状、边界等几何特征还没有清楚的认识,为了弄清这些问题,文章首先通过小渡多尺度分析方法将恰功铁矿磁异常资料进行了位场信号分离,然后应用欧拉反褶积方法反演了异常与其场源深度的对应定量关系,最后把位场分离后的异常场源深度叠加起来,就可以对矿山深部找矿提供一种全新的思路.  相似文献   

18.
Airborne geophysical (aeromagnetic and gravity) data of Nsukka area was interpreted qualitatively and quantitatively with the aim of determining the susceptibilities of rock types, depth/mass of the anomalous bodies, possible cause of the anomalies and type of mineralization prevalent in the area. The estimated depths from forward and inverse modeling of aeromagnetic data for profiles 1, 2, 3, 4 and 5 were 1200m, 1644m, 1972m, 2193m and 2285m respectively. The respective susceptibility values were 0.0031, 0.0073, 1.4493, 0.0069 and 0.0016. These indicate dominance of iron rich minerals like limonite, hematite, pyrrhotite, and pyrite and forms lateritic caps on sandstones. SPI depth result ranges from 151.6m minimum (shallow magnetic bodies) to 3082.7 m maximum (deep lying magnetic bodies). Euler depths for the four different structural index (SI = 0.5, 1, 2, 3) ranges from 7.99 to 128.93m which are depths of shallow magnetic sources resulting from lateritic bodies in the outcrops in the study area. From the gravity data interpretation, Euler depth estimation reveals that depth to anomalous bodies ranges from 89.13 to 2296.92m. Density of the causative body obtained from modeling results for profile 1 was 1498kg/m3, which is in the range of clay material and the depth was about 923m. From models 2, 4 and 5, the densities of the causative bodies were 3523, 4127 and 3707kg/m3, while depths to the surface were about 604, 815 and 1893m respectively. These density ranges correspond to that of ironstone. From model three, the density of causative body obtained was 2508kg/m3, located at a depth of about 268m below the surface. This work has shown that Nsukka area is underlain by thick strata of shales, sandstones and ironstones, which together are suitable for ceramic production, and sufficiently thick sediments suitable for hydrocarbon accumulation.  相似文献   

19.
Aeromagnetic data have been utilized to investigate the subsurface features of the southeast of Al-Muwayh quadrangle. Several techniques have been comprehensively used in an integrative way to reach the goals. Local phase and normalized standard deviation filters are used in this study as edge detectors, showing the possible occurrences of structural lineaments/faults in the quadrangle. Magnitude magnetic transform filters are used to produce anomalies that are closer to the true horizontal position of magnetic sources to enhance the interpretation. Among these transforms, a transform which has been used as edge detectors and the other two transforms are used to show the shallow and the shallowest magnetic sources within the study area. Tilt angle is mainly used to delineate the main magnetic contacts (faults), their locations, and their expected depths. The integration between these different filters show clearly the possible occurrences of edges (contacts/faults), the direction of these lineaments, the source locations of magnetic anomalies, the shallow and the shallowest causative targets, and the location and the depths of the main faults deduced from the tilt angle approach.  相似文献   

20.
Zh. A. Fedotov 《Petrology》2012,20(7):640-657
The Mg-(Fe + Ti)-Al melting diagram for pyrolite based on experimental data from literature shows the composition of the liquid as a function of pressure and the degree of pyrolite melting. Three mechanisms of liquid separation from a mantle source material are discussed: (i) gravitational mechanism, which works at a degree of source material melting of 25%, (ii) filter pressing mechanism, which is efficient at degrees of melting lower than 2%, and (iii) nearly complete local melting of mantle material. Garnet in the solid residue is thought to play an important role by affecting the chemistries of mantle magmas. The comparison of petrochemical and experimental data in a Mg-(Fe + Ti)-Al ternary plot shows that picrite and ferropicrite alcaline primary magmas are segregated at depths of 120 and 210 km, respectively, in the garnet stability zone, at degrees of melting lower than 2%; and tholeiite basalt magmas are segregated above this zone. At degrees of melting of 25%, picrobasalt, komatiite-basalt, picrite, and ferropicrite primary magmas of the tholeiite series are derived at depths of 80, 130, 240, and 300 km, respectively. Ultrabasic komatiite magma is generated at high degrees of mantle source melting, with the solid residues devoid of garnet. The tholeiite basalt series can be produced by two parental melts: aluminous and magnesian basaltic, both separated from the mantle sources via the filter pressing mechanism: the former at depths shallower than 30 km in ocean spreading zones (TOR-2), and the latter at depths of 50?C60 km in oceanic spreading zones (TOR-1) and in the subcontinental lithosphere. Primary magnesian basalt magmas of the calc-alkaline and tholeiite series are derived in the lithospheric mantle at the same depths and low degrees of melting. Different evolutionary trajectories of compositionally similar primary magmas are controlled by the conditions of their further fractional crystallization: in compressional environments and with fluids saturating the melts in subduction zones for the former and in extensional environments and free magma ascent to the surface for the latter. Ultrapotassic rock series, such as lamprophyres, leucitites, kamafugites, lamproites, and kimberlites, are most probably generated via the melting of the metasomatized subcratonic mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号