首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Monthly precipitation data from meteorological stations in Nigeria are analysed from 1950 to 1992, in relation to sea surface temperatures (SSTs) in the tropical Pacific and Atlantic Oceans. The analyses have shed some light on understanding the variability of rainfall anomalies observed in Nigeria for this period. The correlation values between rainfall anomaly indices (RAI) and different meteorological indices are not all significant. Thus, the analyses show some indication that rainfall in Nigeria is associated with El Niño-related circulation and rainfall anomalies. The low correlations between RAI and SST in the Pacific confirm low correlations between rainfall and southern oscillation indices (SOI). SST correlations in the tropical Atlantic suggest that warm surface water in this part of the Atlantic moves the Inter Tropical Convergence Zone (ITCZ) southward and away from the SouthEast of Nigeria, indicating less rainfall, while, in SouthWest of Nigeria, the warm surface waters in this part of the Atlantic are likely to be responsible for a more northern position of the ITCZ, which produces more rainfall. The lower correlation in Northern Nigeria may be attributed to its continentality, away from the influence of the sea surface conditions in the Gulf of Guinea and the tropical Atlantic. The drought, or rainfall, cycles in Northern Nigeria are more closely connected to the land surface conditions in the nearby Sahel region.  相似文献   

2.
本文采用经验正交函数展开(EOF)及相关分析等方法,使用中国气象局整编的160站1951~2005年月平均降水资料和NCEP/NCAR再分析资料研究了中国东部夏季降水准两年周期振荡的空间模态及其大气环流背景场.结果表明:(1)中国地区降水季节性差异明显,夏季是主要的降水期并具有明显的准两年周期振荡(TBO)特征,中国东部地区是降水TBO方差变化最大的区域.(2)中国东部夏季降水TBO存在两个主要的空间模态,第1模态以27°N为界南北成反位相的变化关系,降水振幅较大;第2模态降水振幅相对较小,大值中心位于河套-华北地区.(3)形成中国东部夏季降水TBO的两个主要空间模态环流背景场明显不同.第1模态与西太平洋海温成正相关,与东太平洋海温成负相关.第2模态则主要与日本海附近的海温成正相关.当夏季降水TBO以江淮偏多时(第1模态),西太平洋海温偏高,东太平洋海温偏低,中国东部及沿海上空850 hPa有异常反气旋,500 hPa高度相关场东亚上空呈"正负正"波列特征,200 hPa南亚高压加强,西风急流位置偏南.当夏季降水TBO降水位置偏北时(第2模态),中国东部及沿海上空有异常气旋,200 hPa南亚高压偏弱,西风急流位置偏北.  相似文献   

3.
南印度洋海温偶极子型振荡及其气候影响   总被引:23,自引:2,他引:23       下载免费PDF全文
印度洋海表温度(Sea Surface Temperature,简称SST)的方差分析和相关分析表明南印度洋也存在一个海温偶极子型振荡,并定义了一个南印度洋海表温度异常偶极子指数.夏、秋季(南半球冬、春)的南印度洋偶极子指数与后期热带500hPa和100hPa高度场异常有显著而持续的相关,在冬、春达到最大,并可以持续到次年夏、秋.前期夏、秋季节的南印度洋偶极模对次年我国大陆东部夏季降水异常有显著的影响,对应偶极子正位相,次年夏季印度洋、南海(东亚)夏季风偏弱;副高加强且南撤、西伸,南亚高压偏强且位置偏东,易形成我国长江流域降水偏多,华南降水偏少;负位相年反之.后期冬季西太平洋暖池是联系南印度洋偶极子与次年我国夏季降水异常关系的一条重要途径.南印度洋偶极子表现出了明显的独立于ENSO(El Nio Southern Oscillation,简称ENSO)的特征.  相似文献   

4.
A relationship between summer monsoon rainfall and sea surface temperature anomalies was investigated with the aim of predicting the monthly scale rainfall during the summer monsoon period over a section (80°–90°E, 14°–24°N) of eastern India that depends heavily upon the rainfall during the summer monsoon months for its agricultural practices. The association between area-averaged rainfall of June over the study zone and global sea surface temperature (SST) anomalies for the period 1982–2008 was examined and the variability of rainfall in monthly scale was calculated. With a view to significant variability in the rainfall in the monthly scale, it was decided to implement the artificial neural network (ANN) for forecasting the monthly scale rainfall using the SST anomalies as a predictor. Finally, the potential of ANN in this prediction has been assessed.  相似文献   

5.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

6.
ENSO and the natural variability in the flow of tropical rivers   总被引:1,自引:0,他引:1  
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean.  相似文献   

7.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

8.
It is well established that sea surface temperature (SST) plays a significant role in the hydrologic cycle in which precipitation is the most important part. In this study, the influence of SST on Indian subdivisional monthly rainfall is investigated. Both spatial and temporal influences are investigated. The most influencing regions of sea surface are identified for different subdivisions and for different overlapping seasons in the year. The relative importance of SST, land surface temperature (LST) and ocean–land temperature contrast (OLTC) and their variation from subdivision to subdivision and from season to season are also studied. It is observed that LST does not show much similarity with rainfall series, but, in general, OLTC shows relatively higher influence in the pre‐monsoon and early monsoon periods, whereas SST plays a more important role in late‐ and post‐monsoon periods. The influence of OLTC is seen to be mostly confined to the Indian Ocean region, whereas the effect of SST indicates the climatic teleconnection between Indian regional rainfall and climate indices in Pacific and Atlantic Oceans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphereocean coupled model, we conducted two experiments(CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature(SST) modes to the occurrence of El Ni?o events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of El Ni?o events during the boreal autumn in an El Ni?o developing year. However, it weakens El Ni?o events or even promotes cold phase conversions in an El Ni?o decaying year. Therefore, the entire period of the El Ni?o is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the El Ni?o developing years, the positive Indian Ocean Dipole(IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer El Ni?o event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin(IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Ni?o decaying years. As a result, the El Ni?o event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the El Ni?o during the developing years, whereas the IOB mode affects the El Ni?o during the decaying years.  相似文献   

10.
2008年和2012年冬季欧洲气候的差异及成因   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年冬季(1月和2月)和2012年冬季均发生了较强的拉尼娜事件,但欧洲气候,尤其是西欧在这两年差异较大,2008年异常偏暖,而2012年却出现了极寒事件.诊断表明,大气环流异常是造成气候差异的直接原因.2008年冬季,北大西洋上空大气环流异常呈正位相的北大西洋涛动,有利于欧洲异常偏暖;2012年冬季,北大西洋和欧亚高纬阻塞的长期维持是西欧发生极端严寒的重要原因.通过数值试验,研究了前期海表热状况异常对大气的影响.结果表明:北大西洋海温异常能在一定程度上解释这两年欧洲各自的气候异常;尽管热带海温异常对2012年冬季的北大西洋环流形势和欧洲气候异常起一定的贡献,但不能解释2008年的情形;靠近欧洲的北极海冰异常偏少使得欧洲气候偏冷,对2008年的偏暖气候贡献为负,对2012年则有正贡献.  相似文献   

11.
利用中等复杂程度热带大气和海洋模式研究了热带太平洋和大西洋SST通过风应力桥梁的相互作用.利用1958~1998年NCEP分析的海表面温度场(SST)强迫大气模式得到的表面风应力与NCEP分析的同期热通量共同驱动海洋模式,作为控制试验;和控制试验平行,但强迫大气模式的SST在某一海盆取为多年气候平均值的试验作为敏感性试验;比较控制试验与敏感性试验模拟,则可反映风应力桥梁作用下热带某海盆SST异常对其他海盆的影响.结果表明,热带某一海盆SST暖(冷)异常总是引起局地海盆表面西部西(东)风异常和东部东(西)风异常;热带太平洋SST暖(冷)异常导致的该海盆东部表面东(西)风异常可以扩展到热带大西洋,从而导致热带大西洋SST冷(暖)异常;热带大西洋SST暖(冷)异常导致的该海盆西部表面西(东)风异常可以扩展到热带太平洋,从而导致热带太平洋SST暖(冷)异常.  相似文献   

12.
本文研究了2010年2月27日智利8.8级地震前后地球表面潜热通量的时空演化过程,并分析了可能的潜热通量异常及其与地表温度变化的关系.结果表明:(1)此次地震及其强余震前出现了三次明显的潜热通量异常,第一次潜热通量异常出现于主震1个月前,主要分布在震中及其东南陆区,第二次潜热通量异常出现在主震前7天,异常区分布在震中西...  相似文献   

13.
我国海洋地学编图现状、计划与主要进展   总被引:1,自引:1,他引:0       下载免费PDF全文
我国海洋地质地球物理工作起步晚,整体调查程度较低,进一步加强我国海洋地学编图显得十分必要.我国实施的"海洋地质保障工程",将分"中国海陆"、"中国海及邻域"和"中国各海区"三个层次来进行地学编图.第一层次编制了空间重力异常图、布格重力异常图、磁力异常图、地震层析成像图、莫霍面深度图、地质图、大地构造格架图和大地构造格架演化图等8种图件.编图反映出中国海陆重力异常是"线性异常带纵横交错,块状异常区坐落其间"、重力梯级带主要为块体结合带;陆地磁力异常大致正负磁异常相间分布,海域北部为沟-弧-盆相关异常、南部磁条带异常;莫霍面总体特征为"东西分带,南北分块";地震层析成像反映出中国东部和西部岩石层厚度的差异以及上地幔软流层的分布特点;大地构造格架和演化图再现了块体体制向板块体制的转换过程.本次编图强调地球深部结构的变化对表层构造的关联,重视地球物理资料与地质构造的结合,以深-浅层结合来划分中国大地构造格架.已有成果表明,中国海陆大地构造格局可以用"块体构造学说"来描述.  相似文献   

14.
Modelling and observational evidence indicate that interannual variabilities of dynamic height and sea surface temperature (SST) in the eastern part of the tropical Atlantic Ocean (Gulf of Guinea) are largely induced by preceding fluctuations in wind stress, mainly in the western equatorial basin. A wind-driven linear ocean model is used here to test the possibility of forecasting the abnormal dynamic heights. A control run of the model, forced by 1964–1993 wind stress monthly means, is first conducted. Yearly test runs (1964-1994) are subsequently performed from January to August by forcing the model with observed winds from January to May, and then by forcing with the May wind assumed to persist from June to August. During the last three decades the largest deviations of dynamic height simulated by the control run in the Gulf of Guinea in boreal summer would have been correctly forecast from wind data related only to conditions in May of each year. However, for weak climatic anomalies, the model may forecast overestimated values. For the most part (about 20 times during the last 30 years), the sign of the observed SST anomaly in the centre of the Gulf of Guinea during the boreal summer is identical to the sign of simulated anomalies of dynamic height deduced from both control and test runs. Along the eastern equatorial waveguide, the sea level forecasting skill slowly decreases from the first 2 weeks of June until the second 2 weeks of August, but remains high on both sides of the equator throughout boreal summer, as is expected from the adjustment in a linear ocean model. It is established that throughout the year in the Gulf of Guinea the accuracy of the 1-month forecast dynamic height anomaly provided by the simple linear method is greater than that of the 1-month forecast assuming persistence.  相似文献   

15.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

16.
A new ocean reanalysis, covering the period from 1990 to 2009, is evaluated against observational sea surface temperature (SST) and sea surface height (SSH) data in reproducing the temporal characteristics of El Ni?o and El Ni?o Modoki. The new reanalysis assimilates the available SST, temperature–salinity profile, and satellite altimetry data sets into a global ocean model forced with surface boundary conditions from the National Centers for Environmental Prediction atmospheric reanalysis 2. Using the Ni?o 3 index and the improved El Ni?o Modoki index, to distinguish between El Ni?o and El Ni?o Modoki signals, our results show that the two time series in the new reanalysis are in agreement with those obtained from observations during the study period. A composite analysis method is used to demonstrate the temporal evolution of these two types of El Ni?o. The new reanalysis has the advantage of representing the strength and location of El Ni?o events better than the control run, with an increase in the spatial correlation, but El Ni?o variability in the reanalysis is weak in the eastern Pacific, particularly off the coast of South America. As for the El Ni?o Modoki events, the initiation, development, and termination of the warm SST anomalies all occur in the central Pacific. All main features associated with the warm SST anomaly pattern of El Ni?o Modoki are well represented in the reanalysis. Furthermore, using this new ocean reanalysis, we select two strong cases to investigate possible mechanisms that may lead to the different warm SST anomaly patterns.  相似文献   

17.
SST variability on seasonal to sub-annual scales in the coastal region of South America between 30° and 39°S, largely influenced by the Rio de la Plata estuary’s plume, and its relation to wind variability are explored. Data are six years of daily ensembles of gridded satellite SST and sea surface winds with spatial resolutions of about 11 and 25 km, respectively. Observations from oceanographic cruises are used to validate the results. It is found that the seasonal cycle can be explained in terms of two modes. The first one, characterizing fall-early winter/spring-early summer, is related to the radiative cycle. The second one, corresponding to late summer and winter, displays warm/cold anomalies along the Uruguayan coast forced by the prevailing winds during those seasons. In the upper estuary and the northern part of the area of influence of the freshwater plume, variability in sub-annual scales is significant. A large portion of this variance is related to zonal wind anomalies that force warm/cold SSTs along that coast. Cold anomalies of up to −5 °C occur under anomalously intense easterly winds, indicating upwelling. These events are very frequent and show large persistence, occurring up to one and a half months. They also display a marked seasonal cycle – being more frequent in late spring and summer – large inter-annual variability and seem to be modulated by the continental runoff. When discharge is low, the freshwater plume retracts to the west, reducing the inner-shelf stratification and increasing the likelihood of a full upwelling to the surface. In winter, short time-scale SST variability is mostly due to variability in the atmospheric cold fronts crossing the region. Weaker or less frequent (stronger or more frequent) fronts produce a generalized warming (cooling) over the region. As the estuary heats (colds) faster than the shelf, a warm (cold) anomaly develops in the upper Río de la Plata. On inter-annual time scales, probably because ENSO activity was weak during the studied period, SST variability was not important.  相似文献   

18.
Abstract

A simple method is used to study the response of runoff in the Sahel to climate change. The statistical characteristics of rainfall are calculated over the western part of the Sahel for the period 1961–1990, using the BADOPLU network. Daily rainfall is simulated using a Markov process with Weibull distribution for rainfall depths. Runoff is modelled using a conceptual SCS model and the curve numbers are calculated for West Africa. Climate change is provided by simulations using the Arpège GCM (Scenario A1B), and a perturbation method is used on the parameters which describe the rainfall. Changes in rainfall are assumed to occur through increases in frequency, not intensity. Using Arpège, runoff is mainly found to increase, in depth and in number of events, by the end of the 21st century. Changes in evaporation and land use are not included in the analysis. The impact of this 21st century potential climate change (rainfall) on the runoff is found to be of the same magnitude as the impact of changes in land use.  相似文献   

19.
In this study, sensitivity of the Indian summer monsoon simulation to the Himalayan orography representation in a regional climate model (RegCM) is examined. The prescribed height of the Himalayan orography is less in the RegCM model than the actual height of the Himalayas. Therefore, in order to understand the impact of the Himalayan orography representation on the Indian summer monsoon, the height of the Himalayan orography is increased (decreased) by 10 % from its control height in the RegCM model. Three distinct monsoon years such as deficit (1987), excess (1988) and normal rainfall years are considered for this study. The performance of the RegCM model is tested with the use of a driving force from the reanalysis data and a global model output. IMD gridded rainfall and the reanalysis-2 data are used as verification analysis to validate the model results. The RegCM model has the potential to represent mean rainfall distribution over India as well as the upper air circulation patterns and some of the semi-permanent features during the Indian summer monsoon season. The skill of RegCM is reasonable in representing the variation in circulation and precipitation pattern and intensity during two contrasting rainfall years. The simulated seasonal mean rainfall over many parts of India especially, the foothills of the Himalaya, west coast of India and over the north east India along with the whole of India are more when the orography height is increased. The low level southwesterly wind including the Somali jet stream as well as upper air circulation associated with the tropical easterly jet stream become stronger with the enhancement of the Himalayan orography. Statistical analysis suggests that the distribution and intensity of rainfall is represented better with the increased orography of RegCM by 10 % from its control height. Thus, representation of the Himalayan orography in the model is close to actual and may enhance the skill in seasonal scale simulation of the Indian summer monsoon.  相似文献   

20.
Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8–12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号