首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We show that the inclusion of axion emission during stellar evolution introduces important changes into the evolutionary behaviour of aymptotic giant branch (AGB) stars. The mass of the resulting C/O white dwarf (WD) is much lower than the equivalent obtained from standard evolution. This implies a deficit in luminous AGB stars and in massive WDs. Moreover, the total mass processed in the nuclear burning shells that is dredged up to the surface (third D up) increases when axion emission is included, modifying the chemical composition of the photosphere. We conclude that the AGB is a promising phase with which to put constraints on particle physics.  相似文献   

2.
We make use of a previous well-tested Galactic model, but describing the observational behaviour of the various stellar components in terms of suitable assumptions on their evolutionary status. In this way we are able to predict the expected distribution of Galactic white dwarfs (WDs), with results which appear in rather good agreement with recent estimates of the local WD luminosity function. The predicted occurrence of WDs in deep observations of selected Galactic fields is presented, and we discuss the role played by WDs in star counts. The effects on the theoretical predictions of different white dwarf evolutionary models, ages, initial mass functions and relations between progenitor mass and WD mass are also discussed.  相似文献   

3.
Type Ia supernovae(SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs), and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity. However, there exists a diversity among SNe Ia, and a poor understanding of the diversity hampers the improvement of the accuracy of cosmological distance measurements. The variations of the ratios of carbon to oxygen(C/O) of WDs at explosion are suggested to contribute to the diversity. In the canonical model of SNe Ia, a CO WD accretes matter from its companion and increases its mass till the Chandrasekhar mass limit when the WD explodes. In this work, we studied the C/O ratio for accreting CO WDs. Employing the stellar evolution code MESA, we simulated the accretion of He-rich material onto CO WDs with different initial WD masses and different mass accretion rates. We found that the C/O ratio varies for different cases. The C/O ratio of He-accreting CO WDs at explosion increases with a decreasing initial WD mass or a decreasing accretion rate. The various C/O ratios may, therefore, contribute to the diversity of SNe Ia.  相似文献   

4.
Type Ia supernovae(SNe Ia)play a key role in measuring cosmological parameters,in which the Phillips relation is adopted.However,the origin of the relation is still unclear.Several parameters are suggested,e.g.the relative content of carbon to oxygen(C/O)and the central density of the white dwarf(WD)at ignition.These parameters are mainly determined by the WD's initial mass and its cooling time,respectively.Using the progenitor model developed by Meng & Yang,we present the distributions of the initial WD mass and the cooling time.We do not find any correlation between these parameters.However,we notice that as the range of the WD's mass decreases,its average value increases with the cooling time.These results could provide a constraint when simulating the SN Ia explosion,i.e.the WDs with a high C/O ratio usually have a lower central density at ignition,while those having the highest central density at ignition generally have a lower C/O ratio.The cooling time is mainly determined by the evolutionary age of secondaries,and the scatter of the cooling time decreases with the evolutionary age.Our results may indicate that WDs with a long cooling time have more uniform properties than those with a short cooling time,which may be helpful to explain why SNe Ia in elliptical galaxies have a more uniform maximum luminosity than those in spiral galaxies.  相似文献   

5.
I review various phenomena associated with mass‐accreting white dwarfs (WDs) in the view of supersoft X‐ray sources. When the mass‐accretion rate is low (acc < a few × 10–7 M⊙yr–1), hydrogen nuclear burning is unstable and nova outbursts occur. A nova is a transient supersoft X‐ray source (SSS) in its later phase which timescale depends strongly on the WD mass. The X‐ray turn on/off time is a good indicator of the WD mass. At an intermediate mass‐accretion rate an accreting WD becomes a persistent SSS with steady hydrogen burning. For a higher mass‐accretion rate, the WD undergoes “accretion wind evolution” in which the WD accretes matter from the equatorial plane and loses mass by optically thick winds from the other directions. Two SSS, namely RX J0513‐6951 and V Sge, are corresponding objects to this accretion wind evolution. We can specify mass increasing WDs from light‐curve analysis based on the optically thick wind theory using multiwavelength observational data including optical, IR, and supersoft X‐rays. Mass estimates of individual objects give important information for the binary evolution scenario of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
The final outcomes of accreting ONe white dwarfs(ONe WDs) have been studied for several decades,but there are still some issues that are not resolved. Recently,some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper,we aim to investigate whether ONe WDs can experience accretion-induced collapse(AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),we simulate the longterm evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process,leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However,the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electroncapture induced collapse rather than thermonuclear explosion.  相似文献   

8.
Type Ia supernovae(SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs(CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H-and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model(including the WD+MS channel, the WD+RG channel and the WD+He star channel), the doubledegenerate model(including the violent merger scenario) and the sub-Chandrasekhar mass model.Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.  相似文献   

9.
The analyses of X-ray emission from classical novae during the outburst stage have shown that the soft X-ray emission below 1 keV, which is thought to originate from the photosphere of the white dwarf, is inconsistent with the simple blackbody model of emission. Thus, ROSAT Position Sensitive Proportional Counter (PSPC) archival data of the classical Nova Mus 1983 (GQ Mus) have been re-analysed in order to understand the spectral development in the X-ray wavelengths during the outburst stage. The X-ray spectra are fitted with the hot white dwarf (WD) atmosphere emission models developed for the remnants of classical novae near the Eddington luminosity. The post-outburst X-ray spectra of the remnant white dwarf are examined in the context of evolution on the Hertzsprung–Russell diagram using C–O enhanced atmosphere models. The data obtained in 1991 August (during the ROSAT All Sky Survey) indicate that the effective temperature is         . The 1992 February data show that the white dwarf had reached an effective temperature in the range         with an unabsorbed X-ray flux (i.e. ∼ bolometric flux) between     and     . We show that the H burning at the surface of the WD had most likely ceased at the time of the X-ray observations. Only the 1991 August data show evidence for ongoing H burning.  相似文献   

10.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

11.
We study four scenarios for the SCP 06F6 transient event that was announced recently. Some of these were previously briefly discussed as plausible models for SCP 06F6, in particular with the claimed detection of a z=0.143 cosmological redshift of a Swan spectrum of a carbon rich envelope. We adopt this value of z for extragalactic scenarios. We cannot rule out any of these models, but can rank them from most to least preferred. Our favorite model is a tidal disruption of a CO white dwarf (WD) by an intermediate-mass black hole (IMBH). To account for the properties of the SCP 06F6 event, we have to assume the presence of a strong disk wind that was not included in previous numerical simulations. If the IMBH is the central BH of a galaxy, this explains the non-detection of a bright galaxy in the direction of SCP 06F6. Our second favorite scenario is a type Ia-like SN that exploded inside the dense wind of a carbon star. The carbon star is the donor star of the exploded WD. Our third favorite model is a Galactic source of an asteroid that collided with a WD. Such a scenario was discussed in the past as the source of dusty disks around WDs, but no predictions exist regarding the appearance of such an event. Our least favorite model is of a core collapse SN. The only way we can account for the properties of SCP 06F6 with a core collapse SN is if we assume the occurrence of a rare type of binary interaction.  相似文献   

12.
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (   B ≳ 1014  G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron star crust and calculate the cooling of magnetars with a dipole magnetic field for various locations of the heat layer, heat rates and magnetic field strengths. Combined effects of strong magnetic fields and light-element composition simplify the interpretation of magnetars in our model: these effects allow one to interpret observations assuming less extreme (therefore, more realistic) heating. Massive magnetars, with fast neutrino cooling in their cores, can have higher thermal surface luminosity.  相似文献   

13.
Type Ia supernovae (SNe Ia) play a key role in measuring cosmological pa- rameters, in which the Phillips relation is adopted. However, the origin of the relation is still unclear. Several parameters are suggested, e.g. the relative content of carbon to oxygen (C/O) and the central density of the white dwarf (WD) at ignition. These parameters are mainly determined by the WD's initial mass and its cooling time, respectively. Using the progenitor model developed by Meng Yang, we present the distributions of the initial WD mass and the cooling time. We do not find any correlation between these parameters. However, we notice that as the range of the WD's mass decreases, its average value increases with the cooling time. These results could provide a constraint when simulating the SN Ia explosion, i.e. the WDs with a high C/O ratio usually have a lower central density at ignition, while those having the highest central density at ignition generally have a lower C/O ratio. The cooling time is mainly determined by the evolutionary age of secondaries, and the scatter of the cooling time decreases with the evolutionary age. Our results may indicate that WDs with a long cooling time have more uniform properties than those with a short cooling time, which may be helpful to explain why SNe Ia in elliptical galaxies have a more uniform maximum luminosity than those in spiral galaxies.  相似文献   

14.
15.
大质量恒星由于其高光度、短寿命和质量损失 ,对星系的积分光谱能量分布和重元素增丰起主导作用 ,从而在研究星系的形成和演化上具有特殊的意义。特别是随着天文设备的长足进展 ,我们可以回溯宇宙演化的历史 ,得到形成初期时星系的观测性质。那时 ,大质量恒星主导星系的辐射性质 ,这更加突出了对大质量恒星进一步了解的迫切性。但是大质量恒星的演化性质相对中小质量恒星而言 ,有很多不确定性。本文通过对比现有恒星模型与实测结果 ,对现有大质量恒星演化理论中存在的几个与对流和质量损失相关的问题进行了评述 ,并对从理论上 ,特别是通过数字模拟方法对这些问题进行诊断提出了展望。  相似文献   

16.
We report a study of the photospheric composition of the hot DA white dwarf WD 2218+706, which is also the central star of the old planetary nebula DeHt5. Helium is detected in the far-UV spectrum. In addition, the star clearly contains significant quantities of elements heavier than He at abundances generally a factor of 2 to 10 higher than those found in the archetypal heavy element-rich DA G191−B2B. This is the first detection of trace He using the He  ii λ 1640 line in an isolated DA white dwarf, but the low surface gravity is more indicative of a binary evolution route from the red giant branch rather than a path along the asymptotic giant branch (AGB) as a single star. However, the absence of any evidence for a companion star and the uncertainty in the measured mass for WD 2218+706 still allow the possibility of an origin along an AGB evolutionary track.
We reanalyse the existing optical spectra of WD 2218+706 using our latest pure H and heavy element-rich model atmospheres, obtaining a good match between the observed and synthetic spectra with either set of models. We find little evidence of any inconsistency in the temperature required to fit individual Balmer lines, as reported elsewhere for this star. Any discrepancies we see are confined to the H α line and the core of H β but they do not compromise our analysis.  相似文献   

17.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

18.
We derive a simple analytical solution for the evolution of a close binary with nuclear time-scale driven mass transfer from a giant. This solution is based on the well-known fact that the luminosity and the radius of a giant scale to a good approximation as simple power laws of the mass M c of the degenerate helium core. Comparison with results of numerical calculations by Webbink, Rappaport & Savonije show the analytical solution and the power-law approximation to be quite accurate. The analytical solution presented does also allow (in parametrized form) for non-conservative mass transfer. Furthermore, it is shown that the near constancy of the mass-transfer rate over most of the mass-transfer phase seen in the results by Webbink, Rappaport & Savonije is not a generic feature of this type of evolution but rather a consequence of a particular choice of parameters. The analytical solution also demonstrates that the level of mass transfer is largely set by the core mass of the giant at the onset of mass transfer. Finally, we show that the model is self-consistent and discuss its applicability to low-mass X-ray binaries.  相似文献   

19.
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2–3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After ∼100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15±0.05 M of 56Ni which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K − L '=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.  相似文献   

20.
Type Ia supernovae(SNe Ia) play an important role in studies of cosmology and galactic chemical evolution.They are believed to be thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs)when their masses approach the Chandrasekar(Ch) mass limit.However,it is still not completely understood how a CO WD increases its mass to the Ch-mass limit in the classical single-degenerate(SD) model.In this paper,we studied the mass accretion process in the SD model to examine whether the WD can explode as an SN Ia.Employing the stellar evolution code called modules for experiments in stellar astrophysics(MESA),we simulated the He accretion process onto CO WDs.We found that the WD can increase its mass to the Ch-mass limit through the SD model and explosive carbon ignition finally occurs in its center,which will lead to an SN Ia explosion.Our results imply that SNe Ia can be produced from the SD model through steady helium accretion.Moreover,this work can provide initial input parameters for explosion models of SNe Ia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号