首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
以1993—2018年北太平洋海表面温度(SST)、海表面盐度(SSS)、叶绿素a浓度(Chl-a)、二氧化碳分压(pCO2)等数据为基础,利用传统线性回归分析和BP神经网络算法,建立表层海水pH值的预测模型。结果表明:两种方法对于重建北太平洋表层海水pH值都能达到较高的精度,其中线性回归模型基于SSS、Chl-a、pCO2参数模拟最佳,BP神经网络模型基于SST、SSS、Chl-a、pCO2参数模拟最佳。对比两种最佳模型的均方根误差和拟合系数发现,BP神经网络模型优于线性回归模型。除此之外,最佳BP神经网络模型在4个季节的拟合效果均很好,不同季节的适用性远高于最佳线性回归模型。表层海水pH值受到多种因素的综合影响,与pCO2、SST呈负相关关系,与SSS、Chl-a呈正相关关系。应用最佳BP神经网络模型重建北太平洋表层海水pH值发现,本研究模型的预测结果与已有研究、哥白尼欧洲地球观测计划数据、站点实测数据都存在很好的一致性,表层海水pH值冬季高于夏季,整体呈现西北高东南低的趋势。  相似文献   

2.
近海海湾受人类活动及自然变化影响大,海水碳源汇格局变化影响机制极其复杂。由于海湾空间尺度小,需要使用宽波段的高空间分辨率卫星遥感对海-气CO2通量进行监测评估。相对于传统公里级的水色卫星资料,海-气CO2通量定量估算的关键参数——海表CO2分压(sea surface partial pressure of CO2,pCO2)遥感反演在小尺度海湾具有极大的挑战性。该文以秋季象山港为例,利用走航观测pCO2数据及近5年哨兵2号(Sentinel-2)卫星影像,采用支持向量机(support vector machine, SVM)机器学习的方法,基于Sentinel-2遥感反射率及其比值,建立了海表pCO2的遥感反演算法。算法验证结果显示决定系数为0.92,均方根误差为23.23μatm,遥感反演结果与实测值具有较高一致性。在此基础上,制作了2017—2021年秋季(9—11月)象山港海表pCO2遥感产品,结果表明...  相似文献   

3.
In the northwestern North Pacific, annual net air-sea CO2 flux is greatest in the Kuroshio Extension(KE) zone,owing to its low annual mean partial pressure of CO2(pCO2), and it decreases southward across the basin. To quantify the influences of factors controlling the latitudinal gradient in CO2 uptake, sea surface pCO2 and related parameters were investigated in late spring of 2018 in a study spanning the KE, Kuroshio Recirculation(KR), and...  相似文献   

4.
利用海-气界面浮标观测得到的高频数据,分析了春季青岛近岸海域海表二氧化碳分压(pCO2)的变化规律及驱动因素,并对海-气CO2通量进行了估算。观测期间该海域由大气的碳汇转变为碳源,主要是由海表pCO2的不断增长所致。对海表pCO2控制因素进行分析,发现温度升高是pCO2增长的主要驱动因素,生物过程起到一定的抑制作用。海表pCO2呈现出日变化特征,温度和生物因素对海表pCO2日变化的作用均与太阳辐射相关,但两者的作用相反。此外,分析发现浮标的不同采样频率会对海-气CO2通量估算产生影响,缩短采样间隔能有效降低海-气CO2通量估算的偏差,提高估算的准确性。  相似文献   

5.
海洋盐度在水循环、海洋环流、海洋生态系统、全球天气和气候变化等方面起着至关重要的作用。然而, 受观测的限制, 以往对海洋盐度的研究相对匮乏, 对其进行预报的工作更为少见。本文采用线性马尔可夫模型对印度洋海表面盐度(sea surface salinity, SSS)开展初步的预报工作。根据混合层盐度收支方程, 选择海表面高度(sea surface height, SSH)、海表面温度 (sea surface temperature, SST)、SSS等物理量的异常值作为模型的组成部分, 对印度洋SSS开展预报工作。结果表明, 马尔可夫模型可提前9个月对印度洋SSS进行较好的预报。此外, 南太平洋海表面温度异常(sea surface temperature anomaly, SSTA), 海表面高度异常(sea surface height anomaly, SSHA)和印度洋偶极子(Indian Ocean dipole, IOD)系数等遥相关因素的加入可将线性马尔可夫预报对印度洋SSS的预报效果(相关系数)平均提高10%。利用改进的模型对印度洋SSS进行提前1~11个月的“实时”预测, 得出预报的SSS时空变化特征与观测场相吻合。综上所述, 改进的线性马尔可夫模型对印度洋SSS具有一定的预测能力, 未来可进一步完善。  相似文献   

6.
采用船载海?气CO2连续观测系统于2011年和2014年夏季在琼州海峡开展了现场观测,分析研究了表层海水二氧化碳分压(pCO2)时空变化及其影响因子。2011年和2014年夏季pCO2分别为(516±29) μatm和(533±15) μatm,海?气CO2交换通量分别为(8.4±1.7) mmol/(m2·d)和(4.5±0.4) mmol/(m2·d),均是大气CO2的强源,高于相邻及相似海域,主要受控于东口海域上升流和海峡中部狭管效应。2011年夏季东口上升流增大pCO2的同时也促进了浮游植物繁殖,光合作用吸收水体CO2,降低了pCO2,而且受其影响,西口口门附近叶绿素a和溶解氧含量陡增,pCO2突降。2014年夏季东口海域上升流较弱,且观测海域垂直混合作用显著,pCO2和溶解氧分布特征与2001年夏季明显不同。海峡中部狭管效应造成水体输运速率大、混合作用强,浮游植物“来不及”生长,pCO2较高。  相似文献   

7.
海洋是自然界中重要的碳汇,海-气二氧化碳通量通常利用大气和海水表层的二氧化碳分压(pCO2)差进行估算。受制于时空分布不均匀的观测样本和预测数据,目前已有海水表层二氧化碳分压的重构结果在空间分辨率上仍有较大可提升空间。为在高空间分辨率下更好地拟合时空变化,基于表层大洋二氧化碳地图(SOCAT)的海水表层二氧化碳逸度(f CO2)数据集和遥感卫星等多源数据,利用XGBoost模型建立了海水表层二氧化碳分压值与海洋物理、生物、光学等要素的非线性关系,并根据样本时空频率构建权重模型,最终重构了2000-2018年大西洋0.041 7°×0.041 7°下月度海水表层二氧化碳分压分布。预测结果的相关系数为0.966,均方根误差为8.087μatm,平均偏差为4.012μatm,与同类重构结果相比,海水表层二氧化碳分压的时空变化趋势一致性强,且在空间分辨率上具有优势。  相似文献   

8.
姜正  张荣华  宫勋 《海洋与湖沼》2023,3(3):689-702
为研究赤道太平洋海表二氧化碳分压(pCO2sw)年际变化的机制,基于中科院海洋所宋金明研究团队于2021年发布的中国首套全球海表二氧化碳分压数据产品,使用相关性分析、经验正交函数(empirical orthogonal function, EOF)分析和奇异值分解(singular value decomposition, SVD)等方法,研究了2005~2019年赤道太平洋pCO2sw气候态分布及其去趋势后的年际异常的时空演变特征;结合pCO2sw与多种参数的相关性和厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)过程探讨了赤道中西太平洋pCO2sw年际异常中心形成的原因。研究结果显示,热带太平洋pCO2sw季节变化、年际异常及其EOF第一模态特征向量沿赤道均出现两个中心,其中一个在赤道中西太平洋日界线附近,另一个在赤道中东...  相似文献   

9.
长鳍金枪鱼(Thunnusalalunga)是主要的经济性金枪鱼鱼种之一,其空间分布与环境因子存在着密切联系。利用2012—2019年印度洋长鳍金枪鱼生产数据和海洋环境数据,包括海表面温度(sea surface temperature, SST)、叶绿素浓度(chlorophyll a, chl a)和海表面盐度(sea surface salinity, SSS)构建印度洋长鳍金枪鱼时空分布神经网络模型。以空间(经度,纬度)、环境因子(SST, chl a, SSS)为解释变量,局部渔获量为因变量,变化隐含层节点数,构建了18个BP空间分布模型,并采用10×10交叉验证模型稳定性,以均方误差(meansquareerror,MSE)、平均相对方差(averagerelativevariance,ARV)以及拟合优度(R~2)作为不同模型精度与稳定性的评判标准,最终选取5-18-1(隐含层节点18)模型为最佳模型,其平均MSE值为0.02232,平均ARV值为0.511。利用最优模型预测结果与同期实际捕捞产量进行叠加对比发现两者具有一致性。环境因子敏感性分析表明海表温度显著影响印度洋长鳍金枪鱼渔场分布,其贡献率达到0.2。印度洋长鳍金枪鱼高精度BP神经网络时空分布模型为其资源的可持续开发与动态管理提供了一种新思路。  相似文献   

10.
大气CO2浓度升高引起的海洋酸化可能对浮游植物造成不同程度的影响。而近海浮游植物不仅面临着海水酸化问题,还会受到海水溶解性CO2降低及pH升高(海水碱化)的影响。本实验以斑点海链藻(Thalassiosira punctigera)为研究对象,测定7个不同pCO2水平(25 μatm、50 μatm、100 μatm、200 μatm、400 μatm、800 μatm、1 600 μatm)下的生长、光合作用和呼吸作用速率、细胞粒径、叶绿素a和生物硅含量以及叶绿素荧光等参数。结果表明,与400 μatm相比,在海水酸化(pCO2 > 400 μatm)和海水碱化(pCO2 < 400 μatm) 条件下,斑点海链藻的生长速率和叶绿素a含量都显著降低,但是碱化条件下降低的程度更大。此外,碱化处理的藻细胞光合作用速率、最大量子产量(Fv/Fm)和最大相对电子传递速率(rETRmax)都显著低于400 μatm培养下的细胞,而呼吸作用速率显著升高,但是生物硅含量和细胞大小无明显变化。研究表明海水碱化和海水酸化均会抑制其生理活动,而且海水碱化对其影响更显著。这表明正常pCO2生长下的藻细胞具有最适的生理状态。本研究可为探究海水碳酸盐系统变化对海洋初级生产力的影响提供一定的数据支持。  相似文献   

11.
彭鹏飞  马媛  史荣君  王迪  许欣  颜彬 《海洋科学》2022,46(10):140-149
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的pH、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chla、DIC、HCO3PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276.14±52.55)、(–11.59±18.15)和(–13.02±6.71)mmol/(m2·d),冬季各站位FCO2值离散度较大,其中位数是–10.73mmol/(m2·d)。在全年尺度,表层海水p(CO2)及FCO2与水温呈显著正相关,与盐度呈显著负相关。在非养殖区,浮游植物光合作用可能对影响表层海水p(CO2)及FCO2起主导作用。养殖牡蛎钙化、呼吸作用等生理因素释放的CO2对表层海水p(CO2)及FCO2未产生显著影响。考洲洋养殖海域养殖旺季为CO2的源,养殖淡季整体为CO2的弱汇。  相似文献   

12.
During CREAMS expeditions, fCO2 for surface waters was measured continuously along the cruise tracks. The fCO2 in surface waters in summer varied in the range 320–440 μatm, showing moderate supersaturation with respect to atmospheric CO2. In winter, however, fCO2 showed under-saturation of CO2 in most of the area, while varying in a much wider range from 180 to 520 μatm. Some very high fCO2 values observed in the northern East Sea (Japan Sea) appeared to be associated with the intensive convection system developed in the area. A gas-exchange model was developed for describing the annual variation of fCO2 and for estimating the annual flux of CO2 at the air-sea interface. The model incorporated annual variations in SST, the thickness of the mixed layer, gas exchange associated with wind velocity, biological activity and atmospheric concentration of CO2. The model shows that the East Sea releases CO2 into the atmosphere from June to September, and absorbs CO2 during the rest of the year, from October through May. The net annual CO2 flux at the air-sea interface was estimated to be 0.032 (±0.012) Gt-C per year from the atmosphere into the East Sea. Water column chemistry shows penetration of CO2 into the whole water column, supporting a short turnover time for deep waters in the East Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

14.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated.  相似文献   

15.
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m~2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m~2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.  相似文献   

16.
We observed the partial pressure of oceanic CO2, pCO2 sea, and related surface properties in the westernmost region of the subarctic North Pacific, seasonally from 1998 to 2001. The pCO2 sea in the Oyashio region showed a large decrease from winter to spring. In winter, pCO2 sea was higher than 400 μatm in the Oyashio region and this region was a source of atmospheric CO2. In spring, pCO2 sea decreased to extremely low values, less than 200 μatm (minimum, 139 μatm in 2001), around the Oyashio region with low surface salinity and this region turned out to be a strong sink. The spatial variations of pCO2 sea were especially large in spring in this region. The typical Oyashio water with minimal mixing with subtropical warm water was extracted based on the criterion of potential alkalinity. The contribution of main oceanic processes to the changes in pCO2 sea from winter to spring was estimated from the changes in the concentrations of dissolved inorganic carbon and nutrients, total alkalinity, temperature and salinity observed in surface waters in respective years. These quantifications indicated that photosynthesis made the largest contribution to the observed pCO2 sea decreases in all years and its magnitude was variable year by year. These year-to-year differences in spring biological contribution could be linked to those in the development of the density stratification due to the decrease in surface salinity. Thus, the changes in the surface physical structure could induce those in pCO2 sea in the Oyashio region in spring. Furthermore, it is suggested that the direction and magnitude of the air-sea CO2 flux during this season could be controlled significantly by the onset time of the spring bloom. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
白令海BR断面海-气CO2通量及其参数特征   总被引:1,自引:0,他引:1  
通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明,将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量...  相似文献   

18.
南海东北部春季海表pCO_2分布及海-气CO_2通量   总被引:1,自引:1,他引:0  
2013年南海东北部春季共享航次采用走航观测方式,现场测定了表层海水和大气的二氧化碳分压(pCO2)及相应参数。结合水文、化学等同步观测要素资料,对该海域pCO2的分布变化进行了探讨。结果表明,陆架区受珠江冲淡水、沿岸上升流及生物活动的影响,呈现CO2的强汇特征;吕宋海峡附近及吕宋岛西北附近海域受海表高温、黑潮分支"西伸"、吕宋岛西北海域上升流等因素影响,呈现强源特征。根据Wanninkhof的通量模式,春季整个南海东北部海域共向大气释放约4.25×104 t碳。  相似文献   

19.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

20.
ABSTRACT

Having a reliable ocean carbon flux (f(CO2)) retrieval model is essential to monitoring the global carbon cycle and to evaluating the climate change. Remote sensing techniques provide alternatives for f(CO2) retrieval with its advantages of wide area surveys and real-time monitoring. In the present study, a semianalytical f(CO2) estimation model was developed based on remote sensing data and in situ measurements in the Chinese Bohai Sea. The used model performed well (R2?=?0.84) in deriving f(CO2) based on the collected remotely sensed dataset, including sea surface temperature, estimated sea surface salinity, wind speed, Chl-a concentration. The results showed that the distribution of partial pressure of carbon dioxide (p(CO2)) and f(CO2) varied spatially and temporally during the 12 months in 2009. The spatial fluctuations of p(CO2) and f(CO2) in Bohai Sea in summer and autumn were more obvious than that in Spring and Winter. The highest values of p(CO2) and f(CO2) generally appeared in coastal regions. Moreover, the average f(CO2) value of the 12 months showed that the Bohai Sea performed as a weak carbon source in 2009. The results provided technical and data support for carbon management and climate negotiation in the Bohai Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号