首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Peculiarities of formation and ore potential of black shales of the Paleoproterozoic Udokan Group are considered. They are compared to the stratotype (Khokholma Formation, Sukhoi Log gold deposit). The black shales are confined to lower parts of the Paleoproterozoic sequence of the Udokan Group. They are observed in sections of the Chitkanda, Inyr, Ayan, and Ikab’ya formations. The black shale complex of the Udokan Group is divided into three levels of Au concentration. The first level with background Au contents is typical of barren shales; the second level is confined to sulfidized rocks; and the third level is related to sulfide-quartz veins in the black shales. The average Au content is 0.12 g/t in the sulfidized shales and 0.28 g/t in the sulfide-quartz veins. Black shales of the Udokan Group and Khokholma Formation were formed in a relatively deep shelf zone, while those of the Shaman Formation precipitated in a shallow zone. Protoliths of black shales of the Udokan Group contained graywackes, diorites, syenites, basic rocks, and tuffites. Protoliths of black shales of the Khokholma Formation were produced by the intense weathering of basic and ultrabasic rocks.  相似文献   

2.
Sukhoi Log is one of the largest gold deposits in Russia (1100 t Au at 2.45 g/t). Like many other sediment-hosted gold deposits throughout the world, Sukhoi Log preserves textural, structural and geochemical evidence for multiple generations of Au enrichment and pyrite growth.The deposit is located in the Lena gold province of Siberia, on the edge of the Siberian Craton and occurs in the core of a recumbent anticline in a Neoproterozoic black shale and quartz-rich siltstone-sandstone turbidite succession. Temporal constraints on pyrite paragenesis at the deposit have been determined using laser ablation inductively coupled mass spectrometry (LA-ICPMS) measurements of U, Th and Pb isotopes in pyrite, monazite and zircon. LA-ICPMS age determinations on detrital zircons indicate the host rocks were deposited after 600 ± 10 Ma and derived from a mixture of Palaeoproterozoic and Neoproterozoic sources. The U, Th and Pb isotopic systematics indicate the cores of large monazite crystals, which predate obvious tectonic fabric development in the host rocks, began growing at 573 ± 12 Ma. The rims of the same monazite crystals formed at 516 ± 10 Ma, during peak metamorphism and deformation. Small monazite crystals also grew in the sedimentary rocks during the Devonian (374 ± 20 Ma) and the Carboniferous or Early Permian (288 ± 22 Ma), possibly in response to fluid movements triggered by synchronous granite intrusion in the area. Multi-collector and quadrupole LA-ICPMS Pb isotopic determination on pyrite, combined with overprinting criteria, show that the earliest (stratiform) Pb and Au-bearing pyrite formed prior to metamorphism—possibly during sedimentation or early diagenesis (575-600 Ma). Small Au-rich pyrite nodules preserved as cores to folded bedding-parallel pyrite-quartz veins probably grew during late diagenesis or early metamorphism. Large pyrite euhedra, which overgrow the strong axial planar cleavage in the host rocks, have more radiogenic Pb-isotopic compositions and formed either late during or after deformation. Framboidal pyrite that is overgrown by both the late diagenetic-early metamorphic and syn- to post-metamorphic pyrite has the most radiogenic Pb-isotopic composition suggesting exchange with radiogenic Pb in the matrix may have continued until late in the history of the deposit.The dating and Pb isotopes support a multistage origin for the gold deposit with Au first introduced during or prior to growth of the earliest stratiform pyrite and progressively re-concentrated (with or without addition of further gold) during later metamorphic events.  相似文献   

3.
辽宁红透山铜-锌块状硫化物产在太古宙绿岩带中,矿床形成后经历了强烈的变形和变质,变质程度达高级角闪岩相。野外和显微镜研究表明,矿石在进变质过程中发生过强烈的机械再活化和重结晶,但各种进变质结构大部分已被变质峰期的全面重结晶所清除,目前保存着的结构主要是变质峰期和退变质过程的产物。退变质过程以黄铁矿变斑晶生长、矿石糜棱岩的形成、二次退火和化学再活化为特征。矿床中高度富集铜和金的矿石是韧性剪切形成的矿石糜棱岩受退变质流体叠加而成。磁黄铁矿主要是同生沉积后重结晶的产物,另有一部分由退变质热液形成,而黄铁矿变斑晶则有沉积一重结晶、磁黄铁矿退变质脱硫和热液叠加多种成因。世界各地块状硫化物矿床中的磁黄铁矿和黄铁矿各有三种成因类型。磁黄铁矿的类型有:同生沉积.变质重结晶、同生沉积黄铁矿变质和退变质热液充填或交代;黄铁矿的类型有:同生沉积-变质重结晶、磁黄铁矿退变质脱硫和退变质热液充填或交代。红透山矿区的退变质流体具有从早到晚氧逸度升高的趋势。  相似文献   

4.
Scintillation arc atomic-emission spectrometry (SAES) is used to study noble metals (NM), including Au, Ag, Pt, Pd, Ir, Os, Rh, and Ru, in black shales of the Sukhoi Log gold deposit (Irkutsk Region, Russia), with a focus on NM total contents in samples and on the compositions and sizes of NM-bearing particles. The estimated sizes of gold particles and their distribution are confirmed by results of scanning electron microscopy combined with energy dispersive X-ray microanalysis (SEM-EDX). The SAES results are in satisfactory agreement with earlier SEM-EDX data on NM species but reveal a much greater number and diversity of element associations.  相似文献   

5.
The lead isotopic composition of 33 sulfide samples from orebodies of the Sukhoi Log deposit was studied by high-precession MC-ICP-MS with a precision of ±0.02% (±2SD from 120 analyses of the SRM 981 standard sample). The deposit is located in the Bodaibo gold mining district in the northern Baikal-Patom Highland. Gold mineralization is hosted in Neoproterosoic black slates. Variations of lead isotope ratios of the Sukhoi Log sulfides are generally typical of Phanerozoic deposits and ore fields. They are significant for 206Pb/204Pb (17.903–18.674), moderate for 208Pb/204Pb (37.822–38.457), and relatively narrow for 207Pb/204Pb (15.555–15.679). In the Pb-Pb isotope diagrams, the data points of pyrite and galena constitute a linear trend. The points corresponding to pyrite from metasomatic ore occupy the left lower part of the trend. Galena from late gold-quartz veins shows more radiogenic Pb, and corresponding data points are located in the upper part of the trend. According to the Stacey-Kramers model, the end points of the trend, which is regarded as a mixing line, have μ2 = 9.6 and μ2 = 13.2 and model Pb-Pb ages 455 and 130 Ma, respectively. The isotope characteristics of ore lead, their relationships in pyrite and galena, and the mixing trend of Pb isotopic compositions are clearly tied to two Paleozoic stages in the formation of the Sukhoi Log deposit (447 ± 6 and 321 ± 14Ma) and testify to the leading role of crustal sources, which are suggested as being the Neoproterozoic black-shale terrigenous-carbonate rocks.  相似文献   

6.
Determining the source of sulfur in an ore deposit is key to understanding the nature of the ore forming processes. The Neoarchaean Paulsens sediment-hosted gold deposit (∼1 Moz @ 7.6 g/t) located in the Pilbara Craton of Western Australia exhibits many of the characteristics of Phanerozoic shale hosted gold deposits (e.g. Huijiabao Trend, Northern Carlin Trend and Sukhoi Log), in that 1) black shales are the dominant host rock, 2) gold is hosted in pyrite as both free gold and dissolved gold in the lattice of the pyrite, and 3) multiple generations of pyrite have formed due to a variety of geological processes. In this contribution we utilised Secondary Ion Mass Spectrometer (SIMS) to measure the in-situ quadrupole (32S, 33S, 34S and 36S) sulfur isotope compositions of the different generations of pyrite. Our results indicate that the both diagenetic and hydrothermal pyrite generations display similar and anomalous Δ33S signatures (up to +0.4‰). Further, the Δ33S-Δ36S arrays in the hydrothermal pyrite generations lie on a slope which is similar to that of the diagenetic pyrite. These data support the hypothesis that the sulfur in the ore zones came from the host Hardey Formation black shales.We also performed trace element analyses of syn-sedimentary and early diagenetic pyrite from the Hardey Formaiton using Nano Secondary Ion Mass Spectrometry (NanoSIMS), Electron Probe Microanalysis (EPMA) and Laser Ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), all of which show that the syn-sedimentary and early diagenetic pyrite contain high concentrations of many trace elements (As, Ni, Co, Cu, Ag, Se, Te, Bi), including up to 1.5 ppm Au. These metals contents are also abundant in the several generations of mineralised hydrothermal pyrite and form clear patterns of growth associated with couple dissolution reprecipitation reactions. These findings clearly indicate that the fluid that transported the Au must have also been enriched in the base and precious metals that are contained in the early, syn-diagenesis pyrite.Data from this study clearly support the hypothesis that in some sediment-hosted gold systems, all the sulfur and gold required to form the deposit are sourced from the local sedimentary package. By using the presence of anomalous mass independent sulfur isotope signatures as chemically conservative and indelible tracers, it is possible to fingerprint the source of sulfur in a wide range of mineral systems, thus enhancing predictive exploration strategies at the regional to camp scales.  相似文献   

7.
The deposition of finely disseminated gold in the deposits hosted in black shales is considered. It is suggested that gold deposition is controlled by microstructure of pore space in host rocks. The pore space structure of tight shales indicates that most pore volume is occupied by nanopores with hundredths of micrometers in characteristic dimension. The balance calculations show that deposition of native gold in nanopore channels of filtration is hampered by shortage of number of atoms necessary to overcome a nucleation threshold of the future gold crystal in the pore volume. When ore-transporting solution meets on its way the cavities (pores, micro- and macrofractures), whose volume is sufficient to overcome the nucleation threshold, the excess content of ore component, which exceeds equilibrium concentration, is released with formation of crystallization centers and further precipitation of gold. The conditions of ore deposition are exemplified in the reference Sukhoi Log deposit hosted in black shales. On the basis on the PT conditions of ore deposition and physical features of fluid heat and mass transfer, it is suggested that ore disseminations were deposited at the early high-temperature stage under a fluid pressure close to lithostatic and at a host rock permeability markedly exceeding its present-day value.  相似文献   

8.
In western Victoria, a widespread stratiform style of gold enrichment in Palaeozoic black mudstone and chert—clearly different from the classic mesothermal quartz vein deposits of the Victorian goldfields—has been confirmed by whole-rock geochemistry and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). This enrichment pre-dates compaction, deformation and low-grade metamorphism of the sedimentary host-rocks, and therefore possibly developed diagenetically during slow deposition of the thin carbonaceous black mudstone beds and the thinner layers of chert. These paired strata have been documented at many locations in three regional outcrop areas of chevron-folded Cambrian and Lower Ordovician metasediments in the Stawell and Bendigo Zones, where they are interbedded with quartz-rich turbidites. The layers were named ‘indicators’ by the early miners, who found locally rich nuggety gold deposits at intersections between these layers and mesothermal quartz veins. Gold is present in euhedral pyrite crystals in both black shale and chert. LA-ICPMS analysis of individual pyrite crystals in the indicator beds shows that pyrite is enriched in Au, As, Sb, Se, Te and Bi. The Au content of pyrite varies from 0.03 to 2.69 ppm with a mean of 0.58 ppm and shows a positive correlation with As, which varies from 1000 to 6000 ppm. Many pyrite crystals show enrichment of gold in their cores and depletion in their rims, confirming the likely syngenetic or syndiagenetic accumulation of gold during pyrite formation in the sediments. Prior to regional metamorphism, folding and faulting, the many indicator strata in the outcrop areas were parts of an extensive marine sequence of Late Cambrian and Early Ordovician age. The former primary source of this mineralisation is considered to have been one or more contemporaneously exhalative submarine hydrothermal systems. Thus, the older Palaeozoic sediments of the western Lachlan Fold Belt were significantly enriched in syngenetic gold in the Early Palaeozoic, at least 40 million years before emplacement of the quartz – gold vein deposits of the goldfields.  相似文献   

9.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

10.
The typomorphic features of pyrite of the Sukhoi Log deposit were studied by a set of volumetric and surface methods: electron probe microanalysis, scanning electron and probe microscopy, powder X-ray diffraction, X-ray photoelectron and Auger electron spectroscopy, atomic-absorption spectrometry in the SSADSC (method of statistical sample of analytical data for single crystals) version, and atomic-emission spectrometry. Pyrite from the Sukhoi Log deposit has the following distinctive features: permanent presence of sulfite ion, which often dominates over other surface sulfur anions; weakly determined size dependence of the content of uniformly distributed Au owing to the presence of an internal concentrator of gold—dispersed carbonaceous material—in pyrite from ore zones; cell sculptures of the crystal faces, which appeared owing to the nanofragmentation of the growth surface; micro- and nanoinclusions of carbonaceous phases within crystals, associated with defects in their structure; and thin films enriched in O and C on the surface of and within the crystals. It has been shown that gold-sulfide mineralization at the Sukhoi Log deposit formed in a single ore-generating hydrothermal system, in which gold, sulfur, and carbon belonged to a microparagenesis. Some features (composition of surface, characteristics of submicroscopic structure, and elemental composition) evidence that the conditions of crystallization of pyrite in inter-ore space were different from the conditions of its genesis in the ore zones, which suggests the presence of at least two genetic types of pyrite. Carbonaceous micro- and nanoparticles and O- and C-containing films can favor an increase in the adsorption of gold from cyanide solutions on pyrite. To reduce this effect during gold recovery, a technique for surface modification should be elaborated. The ways for solving the most complicated problems dealt with the source of noble metals (NM) and the ore specialization of the deposit have been outlined. For this purpose, a detailed analysis of the main ore minerals for trace-element speciation is required. In the case of the magmatic source of NM, correlation between the contents of Au and PGE structural forms should exist. On the other hand, there is no correlation between the structural forms of Au or Pt and elements whose contents in fluid are determined by the host rock rather than the magmatic source.  相似文献   

11.
The Jiaodong gold district of eastern China, the largest gold producing district in China, is located on the eastern margin of the North China Craton. It consists of three mineralisation belts: the western Zhao-Ye belt, the middle Qixia belt, and the eastern Muping–Rushan (Muru) belt. Over 85% of mineralisation is hosted in the Zhao-Ye belt, which is bordered by the mantle-tapping Tan Lu fault zone. Pyrite crystals from three deposits in the Zhao-Ye belt and three deposits in the Muru belt were studied using a combination of optical petrography, bulk pyrite geochemistry, and in-situ laser ablation ICP-MS. Results show that although mineralisation is broadly similar between the two belts, there are significant differences in ore and gangue mineral textures, pyrite geochemistry, and style of gold mineralisation.Texturally, pyrite grains from the Zhao-Ye belt are generally cubic and do not exhibit zoning. In contrast, Muru pyrite grains are more often pyritohedral, commonly exhibit well-defined concentric zoning, and display textures in ore and gangue minerals indicative of open space growth. Bulk pyrite geochemistry suggests a distinct enrichment in Pb, Bi, Au, Ag and Te in the Zhao-Ye belt, whereas the Muru belt pyrite is significantly enriched in As, Cu and Co. In situ pyrite geochemistry indicates that Au and As are variably correlated in the Zhao-Ye belt, typically only exhibiting correlation at low Au concentrations. Most gold occurs as visible electrum along pyrite fractures and grain boundaries, with a minor generation of invisible gold formed through As-facilitated uptake into pyrite. In the Muru belt, Au and As have a strong correlation and there is limited occurrence of gold particles, indicating that most gold in the Muru belt is invisible gold contained in the crystal structure of As-rich pyrite.The differences in style of gold mineralisation between the belts indicates an inherent difference in timing of gold introduction: in the Zhao-Ye belt, the visible electrum accounting for most of the gold endowment is formed post-pyrite, whereas the invisible gold in the Zhao-Ye and Muru belts is formed syn-pyrite. The heterogeneity in gold distribution in the Jiaodong district is attributed to melting of metallogenically fertile Archean crust at the base of the well-endowed Zhao-Ye belt, and the lack of a similarly fertile source region beneath the Muru belt.  相似文献   

12.
The formation conditions and age of the Sukhoi Log gold deposit are considered on the basis of new isotopic-geochemical data. The U-Pb isotopic study of zircon and monazite from high-grade ore and host black slates at the Sukhoi Log deposit was carried out with SIMS technique using a SHRIMP II instrument. Two generations of monazite are distinguished on the basis of optical and scanning electron microscopy, cathodoluminescence, and micro X-ray spectroscopy. Monazite I is characterized by black opaque porphyroblasts with microinclusions of minerals pertaining to metamorphic slates and structural attributes of pre- and synkinematic formation. Monazite II occurs only within the ore zone as transparent crystals practically free of inclusions and as rims around monazite I. The REE contents are widely variable in both generations. Porphyroblastic monazite I differs in low U and Th (0.01–0.7 wt % ThO2) contents, whereas transparent monazite II contains up to 4 wt % ThO2. The average weighted U-Pb isotopic age of monazite I is 650 ± 8.1 Ma (MSWD = 1.6; n = 9) and marks the time of metamorphism or catagenesis. The U-Pb age estimates of synore monazite II cover the interval of 486 ± 18 to 439 ± 17 Ma. Zircons of several populations from 0.5 to 2.6 Ga in age are contained in the ore. Most detrital zircon grains have porous outer rims composed of zircon and less frequent xenotime with numerous inclusions of minerals derived from slates. The peaks of 206Pb/238U ages in the most abundant zircon populations fall on 570 and 630 Ma and correspond to the age of newly formed metamorphic mineral phases. The discordant isotopic ages indicate that the U-ThPb isotopic system of ancient detrital zircons was disturbed 470–440 Ma ago in agreement with isotopic age of monazite II and the Rb-Sr whole -rock isochron age of black slates (447 ± 6 Ma). The new data confirm the superimposed character of the gold-quartz-sulfide mineralization at the deposit. Black shales of the Khomolkho Formation of the Bodaibo Synclinorium were affected by metamorphism over a long period; the peaks of metamorphism and catagenesis are dated at 570 and 650–630 Ma. The high-temperature ore formation was probably related to a hidden granitic pluton emplaced 450–440 Ma ago, that is, 200 Ma later than the events of greenschist metamorphism. Hercynian granitoid magmatism (320–270 Ma) did not exert a substantial effect on the U-Th-Pb isotopic system in accessory minerals from the ore and could not have been a major source of ore-forming fluids.  相似文献   

13.
Sedimentary pyrites in black shales contain abundant trace elements that provide information on the chemistry of the seawater at the time of sedimentation. This study focuses on the Barney Creek Formation (~ 1640 Ma) in the McArthur Basin in the Northern Territory of Australia, which is host to one of the world's largest SEDEX Zn-Pb-Ag deposits, and several smaller deposits. Fine-grained sedimentary pyrite has been sampled from three drill holes through the Barney Creek Formation at various distances from SEDEX mineralisation. Samples were selected through the stratigraphy of each hole and analysed by LA-ICPMS for a suite of 14 trace elements. The data show that sedimentary pyrite at the base of the Barney Creek Formation, closest (within 1 km) to SEDEX mineralisation, is strongly enriched in Zn and Tl by one to two orders of magnitude compared to the global average for sedimentary pyrite. In contrast sedimentary pyrite from the hole furthest from SEDEX mineralisation (~ 60 km) contains mean Zn and Tl values equal to, or less than, the global average. Based on the three drill hole pyrite data sets it is concluded that trace elements that are contributed to the basin during hydrothermal exhalation, and adsorbed into contemporaneous sedimentary pyrite, are principally Zn, Tl, Cu, Pb, Ag and As. In contrast, trace elements that are adsorbed into sedimentary pyrite from background seawater are principally Mo, Ni, Co, Se and As. These differences have enabled the development of a SEDEX fertility diagram for sedimentary basins, based on the composition of sedimentary pyrite, that distinguish high Zn, but barren shales, from high zinc SEDEX-related shales. In parallel with the increase in Zn and Tl in sedimentary pyrite approaching mineralisation there is a decrease in Ni, Co and Mo. This means that the ratios Zn/Ni and Tl/Co are particularly good pyrite vectors to SEDEX mineralisation in the McArthur Basin, varying over 4 to 6 orders of magnitude from barren shales to mineralised shales. It is speculated that the reason for the reverse relationship between Ni, Co and Zn, Tl may be caused by hydrothermal exhalations into the water column that effect the ion-exchange pyrite surface complexation processes that alter the uptake of these elements into sedimentary pyrite.Another important conclusion of this study is that hydrothermal exhalations into a sedimentary basin may affect the redox sensitive trace element chemistry of sedimentary pyrite and therefore the trace element chemistry of pyritic black shales. Nickel, Co and Mo all decrease in proximity to hydrothermal vents that form SEDEX deposits, whereas Zn, Tl and Pb increase. Selenium and bismuth are the only redox sensitive trace elements that appear to be unaffected by hydrothermal activity in the McArthur Basin. This has implications on how trace element concentrations of black shales and pyrite are used to reflect past global ocean chemistry.  相似文献   

14.
A review of previous studies of the world's large hydrothermal gold deposits indicates that the largest deposits tend to show complicated parageneses where multiple gold enrichment events and processes have been involved in the deposit generation. These observations suggest that multistage processes may even be a requirement for the formation of large deposits. In some deposits (e.g. Witwatersrand, Boddington Cadia, Sukhoi Log or Carlin) the different enrichment processes occur millions of years apart. In others, such as many large porphyry deposits, the different stages are much closer in time. In many deposits, particularly sedimentary-hosted deposits, early diffuse enrichment occurs within a particular province that is then upgraded by more focused processes (e.g., Sukhoi Log; Kalgoorlie). The presence of this early diffuse enrichment could explain the tendency for gold deposits to cluster into camps.This model has important implications, as the presence or absence of multiple gold events could be used to discriminate, at the exploration and feasibility stages, between small deposits with single stage ore genesis and more complicated deposits with multistage enrichment and the potential for larger gold endowment.  相似文献   

15.
The way of extraction of insoluble carbonaceous substance (ICS) from black shales and technique of determination of noble metals (NM) in it by direct arc atomic emission analysis (AEA) were developed. The first results are reported on the determination of mineral-bound noble metals in ICS concentrates, which were extracted from the rocks and ores of the Sukhoi Log, Vernyi, Vasil’evskoe, Kuranakh, Daugyztau, Bakyrchik, Kamennoe, El’dorado, and other deposits.  相似文献   

16.
Organic carbon isotope composition was studied in the sedimentary cover of the southern Siberian Platform and its surrounding fold systems. The rocks experienced catagenesis, metamorphism, and metasomatism. The chloroform bitumoid (CB) has a stable carbon isotope composition within a wide range of postsedimentation transformations. The average values of δ13C in CB of the sedimentary cover are ?29.5‰. Metamorphism and, especially, ore metasomatism, at the Sukhoi Log deposit caused a 2‰ increase in the heavy carbon isotope concentration of CB as compared to that of the platform deposits. The narrow variations in carbon isotope composition of the bitumoid are defined by their derivation from lipids, whose components are almost insusceptible to changes in the PT conditions. Kerogen from platform deposits is more strongly depleted than CB in the heavy carbon isotope (δ13Cav ? 32.2‰). The insoluble carbonaceous matter (ICM) of the metamorphic shales is significantly enriched in the heavy carbon isotope (δ13Cav ? 21.9‰). The highest changes in carbon isotope composition were found in concentrates of ICM from metasomatically altered rocks of the Sukhoi Log deposit (δ13Cav ? 17.5‰). The heavier carbon isotope composition caused by metamorphism and metasomatism is evidently defined by isotopic exchange between the carbonate carbon and CO2 of metasomatic solutions, on one hand, and ICM of shales, on the other.  相似文献   

17.
The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.  相似文献   

18.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

19.
A small stratiform Fe-Cu-Zn mineralisation has been examined from Boksputs within the metavolcanic Areachap Group (1.5 Ga), along the eastern boundary of the Namaqua Province. Distinctly deformational and metamorphic features within the mineralisation can be separated into an early and a late fabric; the former is related to an early prograde metamorphism (M1) and also to a subsequent mild retrogression (M2) which can be regionally distinguished in the silicate mineralogy, whilst the latter fabric is derived during a severe retrogressive event (M3) that is concentrated especially in shearzones that cut the mineralisation. A release of secondary sulphur-bearing fluids during M3 is evidenced by new growth and redistribution of sulphides and by local replacement of pyrrhotite by pyrite.  相似文献   

20.
The metamorphic rocks of the Aligudarz-Khonsar region can be divided into nine groups: slate, phyllite, sericite schist, biotite-muscovite schist, garnet schist, garnet-staurolite schist, staurolite schist, mylonitic granite, and marble. In this metamorphic region, four phases of metamorphism can be identified (dynamothermal, thermal, dynamic and retrograde metamorphism) and there are three deformation phases (D1, D2 and D3). Paleozoic pelagic shales experienced prograde metamorphism and polymetamorphism from the greenschist to amphibolite facies along the kyanite geotherm. The metapelites show prograde dynamothermal metamorphism from the greenschist to amphibolite facies. Maximum degree of dynamothermal metamorphism is seen in the Nughan bridge area. Also development of the mylonitic granites in the Nughan bridge area shows that dynamic metamorphism in this area was more intense than in other parts of the AligudarzKhonsar metapelitic zone. The chemical zoning of garnets shows three stages of growth and syn-tectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at the greenschist to amphibolite facies (kyanite zone). Thermodynamic studies of these rocks indicate that the metapelites in the Aligudarz-Khonsar region formed at 490–550°C and 0.47–5.6 kbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号