首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
寒潮影响下江苏沿海风浪场数值模拟研究   总被引:2,自引:0,他引:2  
周春建  徐福敏 《海洋工程》2017,35(2):123-130
基于第三代浅水波浪数值预报模型SWAN,建立自西北太平洋嵌套至东中国海、江苏沿海的三重嵌套模型,对2010年12月12日至15日江苏沿海寒潮大风引起的风浪过程进行了数值模拟研究。利用西北太平洋和江苏沿海实测数据对模型进行了验证,结果表明SWAN嵌套模型能较好地模拟江苏沿海寒潮风浪场的时空分布。通过响水站实测数据对江苏沿海底摩擦系数进行了率定,研究表明选取Collins拖曳理论中摩擦因数C_f=0.001时,有效波高模拟误差相对较小。寒潮风浪场的特征分析表明,有效波高分布与风场分布基本一致,寒潮风浪在江苏沿海北部影响较为显著,辐射沙洲附近由于其特殊地形影响相对较小。  相似文献   

2.
储锡君  徐福敏 《海洋工程》2015,33(6):112-118
根据24年CCMP风场资料和江苏沿海4个方向(N、NE、E和SE)百年一遇风速,构建西北太平洋、东中国海和江苏沿海上述4个方向的百年一遇风场。首次建立一个基于第三代海浪模型SWAN的自西北太平洋、东中国海至江苏沿海的三重嵌套数值模型,以AVISO卫星观测数据和江苏沿海定点实测数据进行验证。以三个计算域4个方向百年一遇风场为驱动风场,驱动该多重嵌套模型,高精度数值模拟江苏沿海4个方向百年一遇有效波高分布并进行分析。结果表明,江苏沿海辐射沙洲地形对有效波高分布影响显著;E向百年一遇风场作用下海域有效波高最大,NE向次之,N向和SE较小。  相似文献   

3.
陈橙  李焱 《海洋学研究》2017,35(4):14-19
我国的水运工程建设频繁受到台风浪的侵袭。为了对台风浪的防灾减灾提供有益帮助,本文基于第三代海浪模式SWAN建立了南中国海台风浪数值模型,并以“0906”号台风“莫拉菲”为例对模拟结果进行了分析。结果表明,台风风场与波浪场相似,即大小均由中心向外围递减,方向均为逆时针旋转;台风风场呈圆对称分布,而波浪场由于受到海底地形与岸线影响,呈现椭圆对称分布。有效波高等值线亦从中心向外围递减,且形状受地形与岸线影响较大。对台风浪组成机制的探讨结果显示风浪和涌浪均可组成台风浪,且海底地形与岸线(例如岛屿效应)亦对台风浪特性有所影响。  相似文献   

4.
台风往往会带来强风、大浪、风暴潮。强潮大浪给长江口深水航道整治工程的维护带来挑战。构建了覆盖中国海的台风浪—风暴潮耦合数学模型,模拟了台风“烟花”作用下长江口北槽水域波浪的发展过程,分析了长江口北槽水域波浪分布特点和台风强度。研究表明:叠加风场和潮汐模式共同驱动的台风浪―风暴潮耦合模型,可以准确模拟台风期间长江口水域波浪的生成和发展过程;“烟花”台风期间,外海大浪以东方向浪为主,长江口北槽南挡沙堤沿线有效波高最大值介于1.61~5.22 m之间,自东向西逐渐衰减;台风过程中,长江口北槽水域有效波高在台风二次登录时刻达到最大,口门处有5. 0 m以上大浪;依据台风过程中长江口风速及外海波高、周期与参考规范值对比分析得出,“烟花”台风过程波浪强度约为50年一遇。  相似文献   

5.
A hindcast simulation of 75 typhoons and winter monsoons which affected the coastal areas of Korean Peninsula is performed by use of a third generation ocean wave prediction model, WAM-cycle 4 model, loosely coupled with a com-bined tide and surge model. Typhoon wind fields are derived from the planetary marine boundary layer model for effective neutral winds embedding the vortical storm wind from the parameterized Rankin vortex type model in the limited areas of the overall modeled region. The hindcasted results illustrate that significant wave heights (SWH) considering the wave-tide-surge coupled process are significantly different from the results via the decoupled case especially in the region of the estuaries of the Changjiang Estuary, The Hangzhou Bay, and the southwestern tip of Korean Peninsula. This extensive model simulation is the first attempt to investigate the strong wave-tide-surge interaction for the shallow depth area along the coasts of the Yellow Sea and the East China Sea Continental  相似文献   

6.
潮汐和流影响下长江口波浪场数值计算   总被引:5,自引:1,他引:4  
采用SWAN模型和REF/DIF模型进行嵌套计算的方法来获取长江口海域实际波浪场.其中设计一种根据入射波向即时生成计算网格的方法,解决REF/DIF模型对于波浪入射角的限制从而实现两种模型的嵌套.为考虑水流和潮位分布的空间差异对波浪传播变形的作用,利用二维流场模型计算长江口的水位和流场过程,在实际波浪计算中引入了水位和水流作用.计算结果与观测资料的对比表明:1)SWAN模型和REF/DIF模型的嵌套计算方法可以作为提高浅水区域波浪计算精度的一种有效途径;2)水位和水流对长江口波浪计算的影响显著,考虑了水位和水流条件后,尤其是在大潮期间,能比较显著地提高计算精度.  相似文献   

7.
利用SWAN波浪模型计算长江口附近海域的台风浪,鉴于长江河口岸界和地形复杂,拟采用曲线网格.为证实曲线网格下的SWAN模型对于复杂地形的有效性,首先选用美国特拉华大学波浪水池实验资料对SWAN模型进行检验,结果表明利用曲线网格能不过多增加计算量而提高关键区域的计算精度.以0215号鹿沙台风和0216号森拉克台风为例,将SWAN模型应用到长江口附近海域,进行台风浪的数值模拟.通过浮标测站实测资料验证,表明有效波高计算值与实测值符合良好.通过综合分析模型计算的波浪场,说明SWAN模型能合理地反映长江口附近海域台风浪的分布.  相似文献   

8.
台风引起的海浪灾害对我国黄、渤海沿岸影响巨大,严重威胁相关区域人民群众生命财产安全.本文主要利用ERA5(the fifth generation European Center for Medium-Range Weather forecasts atmospheric reanalysis of the globa...  相似文献   

9.
渤海重现期波高的数值计算   总被引:2,自引:0,他引:2  
利用RAMS大气模式给出的20年风场资料,利用SWAN近海波浪模式对渤海海域的波浪进行了20 a数值计算.通过与一般过程和大风过程的实测资料的对比后发现.波浪模拟值与实潮值符合地较好,SWAN模式适合渤海海域波浪的计算。通过分析发现.辽东湾常浪向为SSW。强浪向为SSW;渤海中部常浪向为S,强浪向为NE;渤海海峡常浪向为NNW,强浪向为NNW;莱州湾常浪向为S,强浪向为NNE;渤海湾常浪向为S.强浪向为NE。渤中偏东南海域(38°~39°N,119.5°~120.5°E)多年一遇有效波高最大.其中百年一遇有效波高最大值达到6.7m。  相似文献   

10.
台湾岛邻近海域台风浪的模拟研究   总被引:8,自引:0,他引:8  
基于目前国际上较为先进的第三代近岸海浪数值模式SWAN(Simulation Waves Near-shore)。在充分考虑相关物理过程(风生浪,底摩擦,白帽耗散,深度诱导波破碎,非线性波-波相互作用)基础上,以较高的分辨率对影响台湾岛邻近海域的9015号台风浪过程进行了模拟研究。模式所需风场由藤田台风风场模型同化相应台风资料后提供;用自嵌套方式提供模式波谱边界条件。模拟结果与实际台风浪资料相符较好。台风过程模拟结果表明;台风中心位于台湾岛邻近海域的不同位置,台风浪有效波高的分布特征和传播方向都有着较大的差异。可以为整个台湾岛邻近海域台风浪分布特征的了解与认识提供较好的参考。  相似文献   

11.
Wind-generated waves in Hurricane Juan   总被引:3,自引:0,他引:3  
We present numerical simulations of the ocean surface waves generated by hurricane Juan in 2003 as it reached its mature stage (travelling from deep waters off Bermuda to Nova Scotia and making landfall near Halifax) using SWAN (v.40.31) nested within WAVEWATCH-III (v.2.22; denoted WW3) wave models, implemented on multiple-nested domains. As for all storm-wave simulations, spectral wave development is highly dependent on accurate simulations of storm winds during its life cycle. Due to Juan’s rapid translation speed (accelerating from 2.28 m s−1 on 27 September, 1200 UTC to 20 m s−1 on 29 September, 1200 UTC), an interpolation method is developed to blend observed hurricane winds with numerical weather prediction (NWP) model winds accurately. Wave model results are compared to in situ surface buoys and ADCP wave data along Juan’s track. At landfall, Juan’s maximum waves are mainly swell-dominated and peak waves lag the occurrence of the maximum winds. We explore the influence of surface waves on the wind and show that the accuracy of the wave simulation is enhanced by introducing swell and Stokes drift feedback mechanisms to modify the winds, and by limiting the peak drag coefficient under high wind conditions, in accordance with recent theoretical and experimental results.  相似文献   

12.
基于WAVEWATCH III,在输入相同的风场条件下,评估了三个输入耗散项WAM3,WAM4以及TC96在是否考虑大气稳定性时的模拟能力。通过5组实验,用南海的测波雷达数据以及研究区域内HY-2高度计的有效波高数据对不同源项的模拟结果进行了比较分析,研究区域为100-135°E,0-35°N。对TC96中的风速校正参数进行了敏感性分析。结果表明,这几种源项在涌浪占主导时的模拟效果都不太理想;考虑大气不稳定性的TC96源项模拟的效果最好;大气不稳定性的影响是以一种所谓的“高效风速”的策略来反映的,其中最重要的一个参数为风速转换参数,这个参数非常敏感,在对特定区域进行模拟之前,应先分析出这个参数的最优值。  相似文献   

13.
基于CCMP(Cross Calibrated Multi-platform)卫星遥感海面风场数据,通过将WAVEWATCH和SWAN (Simulating WAves Nearshore)模型嵌套的方法,数值模拟了珠江口附近海域的风浪场。将总计10个月的数值模拟的有效波高、波周期和波向分别与相应的观测值进行了定量比较。结果说明,有效波高的平均绝对误差为15.4cm,分散系数SI为0.240,相关系数为0.925;波周期的平均绝对误差为1.9s,分散系数SI为0.433,相关系数为0.636;波向的平均绝对误差为23.9°。计算的波高和波向与观测结果的变化趋势相吻合。由于第三代海浪模式本身的缺陷,导致所计算的波周期偏小。总体说来,本文所采用的数值模式能较好地模拟珠江口附近海域的风浪场。另外,还设计了6个算例以探讨采用不同的计算方法和风场对计算结果精度的影响。结果表明使用本文的数值方法和高精度的CCMP风场确实可以提高计算结果的精度。  相似文献   

14.
为减少复杂地形对台风浪数值模拟的干扰,有效优化模拟精度和效果,充分发挥台风浪数值模式在防灾减灾中的作用,文章利用ERA-interim风场驱动模式,以1513号台风"苏迪罗"为例,采用2种方案对其形成的台风浪进行数值模拟,并对二者进行比较。其中,方案(1)为采用WW3模式,方案(2)为采用WW3模式和SWAN模式嵌套。研究结果表明:选取有效波高的模拟值和观测值,根据对散点分布的定性分析以及对相关系数、偏差和均方根误差的定量计算,采用方案(2)的模拟精度更高;通过绘制台风浪场分布图,采用方案(2)对有效波高的动态数值模拟更加明显和准确,尤其对于复杂地形海域的模拟效果更优。因此,在未来的海浪数值模拟中,可参照采用方案(2),即在大区域采用WW3模式,在复杂地形海域嵌套SWAN模式。  相似文献   

15.
杜艳  刘国强  何宜军  韩雪 《海洋科学》2020,44(10):12-22
台风是影响中国黄东海的强天气现象,其引起的强风、巨浪和台风增水严重威胁着沿海地区人民的生命与财产安全。本文以海浪模式SWAN(Simulating Waves Nearshore)与区域海洋模式ROMS(Regional Ocean Modeling System)为基础,构建了中国黄东海海域在201509号台风“灿鸿”影响下的海浪-海洋耦合模式。通过浮标与Jason-2高度计有效波高数据验证了模式结果的准确性。进行了敏感性实验分析,对比耦合(ROMS+SWAN)与非耦合(SWAN)下以及使用不同地形数据(ETOPO1、ETOPO2、GEBCO)、不同物理参数化方案(风能输入、白冠耗散、底摩擦耗散)下的模拟结果差异。结果发现在射阳与前三岛浮标处,使用GEBCO地形数据(15弧秒间隔)下的模拟效果更好且稳定。在空间分布上,台风中心附近的浪流相互作用显著,在其前进方向右侧表现为耦合的有效波高值低于非耦合有效波高值,差值最高可达1米。选择不同风输入与耗散项方案时的模拟差异主要发生在最大波高处,选择不同的风能输入与白冠耗散项方案带来的差异接近0.4米,而底摩擦项方案选择不同带来的差异接近1米。因而在模拟实际的海况时,需要综合考虑这些因素带来的影响,才能达到SWAN海浪模型最好的海浪模拟效果。  相似文献   

16.
太湖风浪场的计算与比较   总被引:1,自引:0,他引:1  
首先探讨了浅水风浪数值模型—SWAN模型应用于模拟内陆湖泊风浪生成和传播变形时的特点。该模型存在不能有效地模拟近固壁边界处风浪场的缺点,以能正确地模拟湖区的风浪场和节约计算时间为原则,确定了计算范围。对太湖进行了风场和风浪场的现场观测。分别利用规范公式和SWAN模型两种方法、根据观测和预报的风场计算了湖区的有效波高,并将计算结果和现场观测值进行了详细比较。结果表明基于观测的风场,利用两种方法所计算的太湖风浪场的精度基本相当;在根据观测的风场、利用SWAN模型计算内陆湖泊的风浪场时,需要精心选择恰当的风场;在根据预报的风场预报湖区风浪场时,SWAN模型的精度要高于规范公式的精度。  相似文献   

17.
1988—2009年中国海波候、风候统计分析   总被引:3,自引:0,他引:3  
利用高精度、高时空分辨率、长时间序列的CCMP(Cross-Calibrated,Multi-Platform)风场,驱动国际先进的第三代海浪模式WAVEWATCH-Ⅲ(WW3),得到中国海1988年1月~2009年12月的海浪场。对中国海的波候(风候)进行精细化的统计分析,分析了海表风场和浪场的季节特征、极值风速与极值波高、风力等级频率和浪级频率、海表风速和波高的逐年变化趋势,结果显示:(1)中国海的海浪场与海表风场具有较好的一致性,尤其是在DJF(December,January,February)期间;海表风速和波高在MAM(March,April,May)期间为全年最低,在DJF期间达到全年最大;MAM和JJA(June,July,August)期间,中国海大部分海域的波周期在3~5.5s,SON(September,October,November)和DJF期间为4.5~6.5s。(2)中国海极值风速、极值波高的大值区分布于渤海中部海域、琉球群岛附近海域和台湾以东广阔洋面、台湾海峡、东沙群岛附近海域、北部湾海域、中沙群岛南部海域。(3)吕宋海峡在MAM、SON、DJF期间均为6级以上大风和4m以上大浪的相对高频海域,JJA期间,6级以上大风的高频海域位于中国南半岛东南部海域,4m以上大浪主要出现在10°N以北。(4)在近22a期间,中国海大部分海域的海表风速、有效波高呈显著性逐年线性递增趋势,风速递增趋势约0.06~0.15m.s-1.a-1,波高递增趋势约0.005~0.03m.a-1。  相似文献   

18.
Studies of offshore wave climate based on satellite altimeter significant wave height(SWH) have widespread application value. This study used a calibrated multi-altimeter SWH dataset to investigate the wave climate characteristics in the offshore areas of China. First, the SWH measurements from 28 buoys located in China's coastal seas were compared with an Ifremer calibrated altimeter SWH dataset. Although the altimeter dataset tended to slightly overestimate SWH, it was in good agreement with the in situ data in general. The correlation coefficient was 0.97 and the root-mean-square(RMS) of differences was 0.30 m. The validation results showed a slight difference in different areas. The correlation coefficient was the maximum(0.97) and the RMS difference was the minimum(0.28 m) in the area from the East China Sea to the north of the South China Sea.The correlation coefficient of approximately 0.95 was relatively low in the seas off the Changjiang(Yangtze River) Estuary. The RMS difference was the maximum(0.32 m) in the seas off the Changjiang Estuary and was0.30 m in the Bohai Sea and the Yellow Sea. Based on the above evidence, it is confirmed that the multialtimeter wave data are reliable in China's offshore areas. Then, the characteristics of the wave field, including the frequency of huge waves and the multi-year return SWH in China's offshore seas were analyzed using the23-year altimeter wave dataset. The 23-year mean SWH generally ranged from 0.6–2.2 m. The greatest SWH appeared in the southeast of the China East Sea, the Taiwan Strait and the northeast of the South China Sea.Obvious seasonal variation of SWH was found in most areas; SWH was greater in winter and autumn than in summer and spring. Extreme waves greater than 4 m in height mainly occurred in the following areas: the southeast of the East China Sea, the south of the Ryukyu Islands, the east of Taiwan-Luzon Island, and the Dongsha Islands extending to the Zhongsha Islands, and the frequency of extreme waves was 3%–6%. Extreme waves occurred most frequently in autumn and rarely in spring. The 100-year return wave height was greatest from the northwest Pacific seas extending to southeast of the Ryukyu Islands(9–12 m), and the northeast of the South China Sea and the East China Sea had the second largest wave heights(7–11 m). For inshore areas, the100-year return wave height was the greatest in the waters off the east coast of Guangdong Province and the south coast of Zhejiang Province(7–8 m), whereas it was at a minimum in the area from the Changjiang Estuary to the Bohai Sea(4–6 m). An investigation of sampling effects indicates that when using the 1°×1°grid dataset, although the combination of nine altimeters obviously enhanced the time and space coverage of sampling, the accuracy of statistical results, particularly extreme values obtained from the dataset, still suffered from undersampling problems because the time sampling percent in each 1°×1°grid cell was always less than33%.  相似文献   

19.
分析四象限非对称风场模型与叠加风场模型的优缺点,将模型结果与实测风速进行对比验证;利用上述两种风场模型分别驱动第三代海浪模式SWAN,对发生在南海海域的三场台风浪进行了数值模拟计算。结果显示:四象限非对称模型关于风速的计算值与实测值吻合度更高,尤其是当台风中心距离测站较近时;四象限非对称模型驱动SWAN模拟的台风浪精度优于叠加风场模型,适用于南海台风浪的数值模拟。  相似文献   

20.
使用风浪谱的零阶矩(M0w)和混合浪谱的零阶矩(M0)定义的混合浪能量成份因子,作为划分风浪与涌浪的一个新判据,给出了混合浪能量成份因子和混合浪波高成份因子的计算公式。根据混合浪波高成份因子的计算公式,使用GEOSAT卫星高度计50个重复周期的资料,计算了南海海域波高成份因子及其月变化规律,资料的样本长度是1个月。计算结果表明:该海域的混合浪波高成份因子具有明显的时间变化规律。海浪在11、12、1、2月份和5、6、7、8月份,混合浪波高成份因子的概率密度分布形状高而窄,而在3、4月份和9、10月份,混合浪波高成份因子的概率密度分布形状低而宽。在11、12、1和2月份,最可能出现的混合浪波高成份因子等于1.2,有70%的波浪含有涌浪成份,在整个海域涌浪占主导地位。在5、6、7月份,最可能出现的混合浪波高成份因子位于0.3~0.4之间,有60%的波浪只含有风浪成份,在整个海域风浪占主导地位。其它月份,最可能出现的混合浪波高成份因子介于冬夏两季之间,亦即风浪和涌浪出现的概率几乎是相同的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号