首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
土-膨润土竖向隔离屏障广泛应用于城市工业污染场地。化学溶液作用下屏障材料的化学相容性,即渗透系数及其变化程度,是评价防污性能的关键因素。通过柔性壁渗透试验研究重金属铅-锌复合、六价铬作用下砂-膨润土竖向隔离屏障材料渗透系数的变化规律。由于无机盐溶液中铅、锌、钙对膨润土双电层的压缩,铅-锌复合、钙溶液作用下屏障材料试样渗透系数随金属浓度升高而增大。铅-锌复合作用下,金属浓度增至500mmol/L时试样渗透系数增幅达11倍,且无法满足防渗要求。相反,由于铬以阴离子络合形式存在,其对试样渗透系数影响相对小;与未污染状态测定结果相比,渗透系数增幅≤2倍。在膨润土孔隙比基础上,考虑无机盐溶液对膨润土膨胀特性的影响,建立无机盐溶液作用前后砂-膨润土竖向隔离屏障材料渗透系数统一预测方法。  相似文献   

2.
土-膨润土竖向隔离屏障广泛应用于城市工业污染场地。化学溶液作用下屏障材料的化学相容性,即渗透系数及其变化程度,是评价防污性能的关键因素。通过柔性壁渗透试验研究重金属铅-锌复合、六价铬作用下砂-膨润土竖向隔离屏障材料渗透系数的变化规律。由于无机盐溶液中铅、锌、钙对膨润土双电层的压缩,铅-锌复合、钙溶液作用下屏障材料试样渗透系数随金属浓度升高而增大。铅-锌复合作用下,金属浓度增至500 mmol/L时试样渗透系数增幅达11倍,且无法满足防渗要求。相反,由于铬以阴离子络合形式存在,其对试样渗透系数影响相对小;与未污染状态测定结果相比,渗透系数增幅≤2倍。在膨润土孔隙比基础上,考虑无机盐溶液对膨润土膨胀特性的影响,建立无机盐溶液作用前后砂-膨润土竖向隔离屏障材料渗透系数统一预测方法。  相似文献   

3.
土-膨润土系竖向隔离墙广泛应用于工业污染场地和地下水修复工程。通过坍落度和一维压缩固结试验研究添加沸石对黏性土-膨润土竖向隔离墙材料的工作性,以及压缩和渗透特性。黏性土选用高岭土,沸石-高岭土-膨润土试样中沸石掺量为2%~40%。试验结果与以往沸石-砂-膨润土竖向隔离墙材料以及击实沸石-膨润土混合土研究结果进行对比,明确沸石掺量和粒径对压缩和渗透特性的作用规律。试验结果显示,满足隔离墙材料施工要求的含水率范围随沸石掺量增加而增大,并处于液限的0.96~1.18倍。添加细颗粒沸石对试样的压缩指数和渗透系数影响较小,渗透系数小于10-9 m/s。相反,添加粗颗粒沸石将导致微孔隙尺寸增大,并形成水能够通过的沸石网架结构,将显著增大渗透系数。试样渗透系数能够通过考虑孔隙比和液限的经验公式进行良好的预测。  相似文献   

4.
高放废物(HLW)深地质处置中,在膨润土中添加一定比例的石英砂能优化缓冲/回填材料的性能。利用水汽平衡法,对高庙子压实膨润土-砂混合物在不同温度、掺砂率和干密度条件下的土-水特征曲线(SWCCs)进行试验研究,分析温度、掺砂率与干密度对混合物土-水特征曲线的影响。试验结果表明,随着温度升高,混合物的持水能力明显下降;在试验控制吸力范围内,低吸力段掺砂率对土-水特征曲线影响明显,高吸力段掺砂率对混合物土-水特征曲线的影响逐渐降低;干密度对混合物的土-水特征曲线基本没有影响。根据试验数据建立了不同温度和掺砂率条件下膨润土-砂缓冲/回填材料土-水特征曲线的经验公式,可用来预测不同温度和掺砂率条件下的膨润土-砂混合型缓冲/回填材料土-水特征曲线  相似文献   

5.
膨润土遇水产生的膨胀变形以及膨胀力是由于颗粒间的斥力引起的,而该斥力大小与土体的固定负电荷密度(采用阳离子交换量CEC来表征)以及孔隙溶液的浓度有关,已有的对膨润土膨胀变形研究多针对孔隙溶液而非土体的阳离子交换量。现以钠基膨润土为研究对象,采用Li+固定法来控制膨润土的固定负电荷密度,以达到降低膨润土阳离子交换量的目的,再采用Li Cl为盐溶液,获得了上述不同阳离子交换量的膨润土在不同浓度的盐溶液作用下的膨胀指数。结果表明:随着溶液浓度升高,土样的膨胀指数降低;当浓度小于1 mol/L时,下降较为显著,之后则缓慢降低;随着阳离子交换量的减少,土样的膨胀指数也呈降低趋势。这是因为土颗粒的阳离子交换量和溶液浓度是影响土样与孔隙溶液物理化学作用的决定性因素,阳离子交换量越小,浓度越高,土颗粒之间的斥力降低,土样的膨胀指数则会降低。采用考虑颗粒间物理化学作用的粒间应力来描述试验结果,表明对于该种膨润土来说,不同阳离子交换量以及不同盐溶液作用下的回弹变形和回弹应力几乎在一条曲线上,这也进一步验证了粒间应力在膨胀土模拟中的有效性和适用性。  相似文献   

6.
在散粒体最大最小孔隙比理论的基础上,采用一种新的液化势指标对不同颗粒级配的二元砂粉混合物进行抗液化能力预测。通过对已有文献数据中砂粉混合物的体积应变势进行计算,分析混合物的细粒含量、粒径比与循环抗力比CRR的关系,结合混合物所处实际孔隙比提出了一个新的液化势指标ε′v。与砂粉混合物的CRR试验数据对比分析显示:各类砂粉混合物的CRR均随ε′v的增大而单调地降低,且两者呈现良好的幂函数关系,并进一步建立了CRR-ε′v关系曲线最佳拟合参数与粒径比的关系。对蒙特利砂混合耶茨维尔粉土试样进行的CRR预测结果表明,ε′v综合反映了土粒径分布、密实状态和颗粒形状的综合影响,是表征砂粉混合物CRR的一个有效指标。实际工程中可代替传统的现场原位试验,仅通过简单的室内试验预测场地土层抗液化能力。  相似文献   

7.
高庙子膨润土与砂混合物的土-水特征曲线   总被引:1,自引:0,他引:1  
用滤纸法和压力板法对高庙子膨润土与福建砂的混合物进行试验研究,在不同孔隙比和不同膨润土与砂配合比情况下量测脱湿过程的土-水特征曲线,研究土-水特征曲线与孔隙比和配合比之间的关系。试验结果表明:在同一配合比下用饱和度与吸力表示土-水特征曲线时,其曲线随着孔隙比的减小向右上方移动,即当土样的吸力一定时,土样的饱和度随着孔隙比的减小而增大,当吸力小于10 MPa时,这种现象较为显著;在同一孔隙比下膨润土与砂混合物的土-水特征曲线随着膨润土的比例增加而向右上方移动,即混合物的进气值随着膨润土的比例增加而增大;另外,配合比以及孔隙比相同时,膨润土与福建砂的混合物的土-水特征曲线与日本产Kunigel膨润土与丰浦砂的混合物的土-水特征曲线非常接近。  相似文献   

8.
分维理论是预测非饱和渗透系数的一种常用方法。在对有侧限条件下高庙子膨润土的非饱和渗透系数的试验结果分析后,发现分维理论并不适用,其缺陷在于不能够反映膨润土这种特殊粘土在水化过程中的微观结构变化。因为膨润土是一种纳米材料,其小孔隙和大孔隙分布在水化过程中都会发生变化,而一般性粘土和砂土没有这种特殊的物理化学特性。结合Kozeny—Carman关于多孔介质的半经验公式,提出了半经验一半理论的考虑微结构的膨润土的非饱和渗透系数计算公式。在对高庙子膨润土的扫描电镜试验和压汞试验资料分析的基础上,定性验证了所提出公式的正确性。  相似文献   

9.
江汉平原第四系弱透水层渗透系数求算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
张婧玮  梁杏  葛勤  李惠  朱波 《地球科学》2017,42(5):761-770
弱透水层的渗透系数是区域地下水流系统划分和关键带水-土-生作用的重要参数.结合江汉平原关键带调查采集1:5万杨林尾-陆溪口图幅钻孔52组不同深度、不同岩性的原状土样,利用改进的渗透仪进行室内渗透实验,对粘性土样的渗透系数和粒度特征参数进行经验公式修正.发现研究区沉积物渗透系数与含水岩组埋深和岩性有关.浅层孔隙潜水含水岩组以粉质粘土、粘土为主,沉积环境稳定,渗透系数约10-9 m/s,变异系数为1.56;中深层承压含水岩组夹有多层粘土和粉砂,呈现多旋回分布的典型河湖交互作用的沉积环境,渗透系数为10-10~10-6 m/s,变异系数为2.04,变异性较大.利用有效孔隙比eu与黏粒含量P的显著二项式关系,修正预测粘性土渗透系数的太沙基经验公式,预测值与室内实测数据基本吻合,二者比值均小于10,验证了太沙基修正公式在河湖相平原区的适用性.   相似文献   

10.
以颗粒状和粉末状膨润土防水毯(GCLs)为对象,运用GDS (global digital systems)全自动渗透仪开展渗透试验,研究CaCl_2溶液作用下GCLs渗透性能的温度效应,初步探讨其机理。试验表明:当水化液为0.05mol/L的CaCl_2溶液时,两种GCLs渗透系数随温度升高呈现增大趋势;当水化液为去离子水时,颗粒状GCL渗透系数随温度升高而减小,粉末状GCL渗透系数随温度升高而增大。去离子水情况下,膨润土吸附结合水量随温度升高而减小;CaCl_2溶液作用下,吸附结合水量较去离子水情况大幅降低。当CaCl_2溶液浓度一定时,膨润土膨胀指数随温度升高而略有增大;当温度一定时,膨润土膨胀指数随CaCl_2溶液浓度升高而显著减小。以去离子水进行试验时:颗粒状和粉末状GCLs渗透系数随温度的变化主要影响因素为凝胶态蒙脱石数量,其次为流体黏滞系数和吸附结合水量;颗粒状GCLs膨润土孔隙结构越不均匀,凝胶态蒙脱石数量的影响就越显著,导致渗透系数随温度升高而减小、固有渗透率随温度升高显著降低。以CaCl_2溶液进行试验时,两种GCLs渗透系数随温度变化的主要受流体黏滞系数和吸附结合水量的影响,而受凝胶态蒙脱石数量的影响较小。孔隙溶液性质、温度和膨润土类型均对GCLs的防渗性能具有重要影响。  相似文献   

11.
葛勤  梁杏  龚绪龙  刘彦 《地球科学》2017,42(5):793-803
渗透系数(K)是水文地质、岩土工程领域的重要参数,而低渗透介质的结构较为复杂,在实际应用中,场地的尺度、介质的扰动程度等均会对K的确定产生影响.利用δ18O化学示踪法、室内试验及经验公式法估算饱和黏性土的垂向渗透系数,并对比分析不同预测方法的适用性.以苏北沿海平原第四纪厚层黏土为例,δ18O化学示踪法预测厚层黏性土的渗透系数低于10-11 m/s,室内法测得渗透系数为2.61×10-8~9×10-12 m/s,经验法预测值较大,是室内法的几倍到几十倍.δ18O化学示踪法是表征天然条件下长时间的实验结果,除了反映数十米厚层黏性土的等效渗透性能,还可预测黏土孔隙水的渗流时间;结合测定黏土样品液塑限等室内实验参数,室内实验和经验公式法可以提供系列剖面黏土的渗透系数,更清晰地说明厚层黏土剖面不同渗透系数预测方法的差异性.   相似文献   

12.
本文在前人基础上改进渗透装置,通过自制多功能膨胀渗透仪在氮气加压为1.0 MPa条件下,测得沸石-膨润土-硫铁矿、凹凸棒石-膨润土-硫铁矿两组混合物在不同膨润土含量、压制载荷、压实密度、出水时间等条件下的渗透系数。实验结果表明:集成回填材料的渗透系数随时间的变化不大,基本满足达西定律。同一干密度和含水率条件下,不同混合物随着膨润土含量的增加,其渗透系数降低。膨润土含量占沸石混合物或者凹凸棒石混合物比例不小于60%时,二者混合物的渗透系数均满足高放废物处置中回填材料渗透系数小于7×10-10m/s的要求。但同等条件下,由于沸石为非粘性矿石,其具有孔隙大、渗透性好等特点,因此天然地下水在沸石混合物中比在凹凸棒石混合物中渗透得快。同一干密度和含水率条件下,不同混合物压实制样的载荷越大,其渗透系数越小,反之越大。压制载荷在50~100 MPa间时,混合物的渗透系数变化不大。通过进行混合物不同配比、不同影响因素对渗透特性影响的研究,为我国新型缓冲回填材料在未来地下工程中施工提供一定的理论依据。  相似文献   

13.
不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测   总被引:1,自引:0,他引:1  
不同初始孔隙比下非饱和土渗透系数的试验测量及预测,是进行非饱和土渗流分析及水-力耦合研究的基础,相关工作具有重要的意义。以湖南邵阳红黏土为例,利用千斤顶制备5种不同初始孔隙密度塑土样;采用压力板仪测量其土-水特征曲线;选用变水头法测量其饱和渗透系数;自制有机玻璃桶试验装置,采用瞬态剖面法进行非饱和渗透试验,测量不同初始孔隙比土样的非饱和渗透系数。选用CCG(Childs和Collis-George)修正模型和陶-孔模型预测非饱和渗透系数,并与实测值进行比较,验证模型有效性。以上述试验及模型预测的成果为基础,研究初始孔隙比对非饱和(相对)渗透系数的影响规律。研究结果表明:湖南非饱和黏性土渗透系数随基质吸力增加而降低,在低基质吸力阶段(100 k Pa以内)变化较为剧烈,在高基质吸力阶段(100 kPa以上)变化较为缓慢;CCG模型预测误差较大,陶-孔模型预测值与实测值总体吻合较好;进气值之后,初始孔隙比对非饱和渗透系数的影响较小,对非饱和相对渗透系数的影响较大,相同基质吸力条件下初始孔隙比越小,相对渗透系数越大。  相似文献   

14.
通过改进滤失试验研究典型钠化改性钙基和天然钠基膨润土在重金属铅-镉以及铬作用下渗透系数的变化规律。研究发现,膨润土试样渗透系数在重金属铅-镉浓度小于6mmol/L时增幅较小,为2~3倍;当浓度超过10mmol/L时呈急剧增大的趋势。铬酸钾溶液作用下,钠化改性钙基膨润土的渗透系数低于未污染试样;天然钠基膨润土的渗透系数则增大2~8倍。两者差异归因于土-液相互作用下铬在不同pH-Eh环境中化学形态的不同。研究中钠化改性钙基膨润土浆液中铬以阴离子络合的六价铬形态存在,使得膨润土颗粒表面负电荷密度趋于增加,因而保持和促进膨润土的分散状态。天然钠基膨润土浆液中铬则出现以阳离子形态存在的三价铬,显著挤压膨润土颗粒双电层,导致膨润土颗粒团聚。综合国内外研究总结无机盐溶液作用下膨润土化学相容性随污染程度变化规律,发现渗透系数比与离子强度关系存在一临界值,当离子强度达到该临界值则渗透系数将呈数量级增大。  相似文献   

15.
张添  汪磊  沈思东 《工程地质学报》2022,30(4):1010-1018
基于Dakshanamurthy和Fredlund提出的二维非饱和土固结理论,利用Fourier正弦级数展开、Laplace变换,分别给出了分段循环荷载作用下二维非饱和土固结问题的超孔隙气压力、超孔隙水压力和沉降的半解析解,并应用退化法验证了本文所得半解析解的正确性。然后,结合3种具体的荷载形式,分析了分段循环荷载作用下气相与液相渗透系数之比(ka/kw)、水平方向与竖直方向渗透系数之比(kx/kz)和荷载特征参数(a)对二维非饱和土固结特性的影响。结果表明:ka/kw和kx/kz的增大均会加速固结沉降进程;荷载特征参数越大,沉降发展越早,沉降值越小;二维非饱和土固结特性受分段循环荷载作用影响明显。因此,在实际施工过程中改变施工速度和设置径向排水装置可有效控制二维条件下非饱和土体的固结过程,该研究成果可为非饱和土地基的设计和施工提供重要理论依据。  相似文献   

16.
针对非饱和渗透系数函数研究中引入未知经验参数会降低预测可靠度的问题,对土样颗粒级配曲线上划分的粒组分别构建形如立方体的天然土颗粒集合体与理想球体颗粒集合体。通过分析两者的几何特征和物理性质,提出计算土孔隙半径的理论表达式;将每个粒组对应的孔隙简化为理想圆柱形孔隙,基于天然土孔隙与理想孔隙内水分流量的相似关系,结合Hagen-Poiseuille公式,构建预测非饱和渗透系数函数的物理方法。依据非饱和土水力特性数据库UNSODA中8个典型土样的持水试验结果验证了孔隙半径表达式在表征土孔径分布时的合理性。结合该数据库及已有文献中26个土样的非饱和渗透试验结果对物理方法进行了验证,通过计算非饱和渗透系数预测值与其实测值之间的相关系数发现其在0.703~0.999范围内变化,并对土样非饱和渗透系数与体积含水率关系的形态和吻合度描述较好,为研究土的非饱和渗透特性提供了一种无需引入未知经验参数的新方法。  相似文献   

17.
下蜀土-膨润土混合土作为一种可选的衬垫材料,其膨胀性对城市垃圾卫生填埋场的安全性有重要意义。本文按不同的初始含水量(10%~20%)和膨润土掺量(5%~15%)共配制了9组混合土试样,并在不同的温度(30~50℃)条件下开展一系列无荷膨胀试验。试验结果表明:初始含水量是影响下蜀土-膨润土混合土膨胀的重要因素,初始含水量越高,试样膨胀性越小;混合土中膨润土掺量越高,膨胀性越大;温度对下蜀土-膨润土混合土的膨胀性也有重要影响,膨胀性随温度的升高增加,尤其对于膨润土掺量较高的试样,膨胀性的温度效应更明显。  相似文献   

18.
张虎元  彭宇  王学文  赵秉正  刘平 《岩土力学》2016,37(Z2):144-150
高放废物缓冲回填工程屏障材料膨润土塑性高,可调性差,加水制样过程中土“团聚化”及含水率分布不均匀现象明显,影响缓冲回填压实砌块质量。与传统直接喷水法对比,试验探索一种加水工艺,即采用粉状冰与膨润土粉混合调配膨润土含水率,试验含水率在5%~30%之间,分析了膨润土与水混合物的混合效率、黏附质量损失率、实际含水率与理论含水率差值、团聚体含水率与粒径关系、混合物中团聚体分布及含量等指标综合评价加水工艺优劣,提出微波辅助解冻法以提高冰-土混合法制备土样的解冻效率。结果显示,与喷水法相比,冰-土混合法混合效率高,膨润土黏附容器少,实际含水率更集中于目标含水率,团聚体数量明显减少,水分分布更均匀;配套的微波辅助解冻法能有效提高冰-土混合法解冻效率,且不影响团聚体数量及试样含水率。研究成果可供我国高放废物缓冲回填材料高效生产及其他高黏性土含水率均匀调配参考。  相似文献   

19.
高压实膨润土的非饱和渗透膨胀模型   总被引:1,自引:0,他引:1  
牛文杰  叶为民  陈宝 《岩土力学》2009,30(Z2):88-92
高放废弃物深地质处置库中,作为缓冲/回填材料的高压实膨润土的设计功能是,遇水吸湿导致土体膨胀变形,以密封高压实膨润土块体砌置时形成的块体与块体之间和块体与围岩之间的施工缝隙以及围岩中因处置库开挖卸载引起的裂缝,形成阻障围岩中地下水渗入内库引起核素迁移,与库内高放废物的辐射扩散的人工屏障。高压实膨润土在自由膨胀条件下的膨胀应变和非饱和渗透系数由渗透试验测得;孔隙比和吸力的关系由压汞试验测得。吸力和含水率的函数关系可由土-水特征曲线测试试验得到。因此,自由膨胀条件下膨润土的非饱和渗透膨胀模型由膨胀应变、非饱和渗透系数和孔隙比与吸力的函数关系建立。结果表明:渗透系数和体积应变都随吸力减小而增加,因为吸力减小会导致孔隙比增加。这一发现有助于设计高放废物的最终处置方案。  相似文献   

20.
梁健伟  房营光  谷任国 《岩土力学》2010,31(10):3043-3050
采用渗流固结法试验结合颗粒表面电位分析,研究极细颗粒黏土的渗流的微电场效应,在相同试验条件下完成了5种含不同百分比的人工高岭土与人工膨润土的试样的渗流特性测试。测试结果表明,微孔渗流的微电场效应对极细颗粒黏土的渗流特性有相当显著的影响,随着孔隙液离子浓度的升降或土颗粒表面电位的增减,试样的渗透系数会随之发生改变;在相同的孔隙液离子浓度下,随着膨润土相对含量的增加,试样的渗透系数随之降低。对科威特软土的渗流固结试验证实了人工土的微电场效应的产生机制与变化规律同样适用于天然软土。试验结果分析认为,在黏土-水-电解质系统的相互作用下,黏土矿物通过土颗粒表面的结合水影响试样的渗流特性,而土颗粒表面电荷的微电场作用是极细颗粒黏土渗流特性改变的内在原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号