首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nepea narinosa Whitehouse, 1939, is as yet the only known species of the Nepeidae and Nepeacea. It is based on fragmentary material unsuitable for conclusive interpretation. The census of Nepeidae as yet unpublished includes five genera and twelve species, confined to the Middle and early Upper Cambrian of Australia. All nepeids have cedariform posterior sutures, free cheeks fused into a unit, a preglabellar boss, forked ocular ridges and a pustulose test. Nepea narinosa is distinguished by its very long intergenal spines and pointed, falcate palpebral lobes provided with a doublure.  相似文献   

2.
Doklady Earth Sciences - The morphology of archaeocyaths from the Oldynda Formation of the Uda–Vitim lithofacial zone and the Aikta Formation of the Birami–Yanguda Zone of West...  相似文献   

3.
Previously published and new data on secondary transformations of the globular and platy phyllosilicates of the glauconite–illite series from the Upper Proterozoic terrigenous rocks of the Olenek and Anabar uplifts (East Siberia), Srednii Peninsula (Murmansk coast), and Vendian–Cambrian boundary rocks of the Podolian Dniester area (Ukraine) are generalized for the first time. Plastic deformation, aluminization, chloritization, berthierinization, as well as replacement of phyllosilicates of different morphology by corrensite- chlorite and pyrite at different lithogenesis stages, are considered and lithological-mineralogical characteristics of the glauconite-bearing rocks are reported. The structural, crystal-chemical, genetic, and isotopegeochronological features of di- and trioctahedral phyllosilicates are discussed.  相似文献   

4.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   

5.
The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine source rocks in the Tarim Basin and have large shale gas resource potential. The Cambrian–Ordovician shales were mainly deposited in basin–slope facies with thicknesses between 30–180 m. For shales buried shallower than 4500 m, there is high organic matter abundance with TOC (total organic carbon) mainly between 1.0% and 6.0%, favorable organic matter of Type I and Type II, and high thermal maturity with RoE as 1.3%–2.75%. The mineral composition of these Cambrian–Ordovician shale samples is mainly quartz and carbonate minerals while the clay minerals content is mostly lower than 30%, because these samples include siliceous and calcareous shale and marlstone. The Cambrian and Ordovician shales are compacted with mean porosity of 4% and 3%, permeability of 0.0003×10?3–0.09×10?3 μm2 and 0.0002×10?3–0.11×10?3 μm2, and density of 2.30 g/m3 and 2.55 g/m3, respectively. The pores in the shale samples show good connectivity and are mainly mesopore in size. Different genetic types of pores can be observed such as intercrystal, intergranular, dissolved, organic matter and shrinkage joint. The reservoir bed properties are controlled by mineral composition and diagenesis. The maximum adsorption amount to methane of these shales is 1.15–7.36 cm3/g, with main affecting factors being organic matter abundance, porosity and thermal maturity. The accumulation characteristics of natural gas within these shales are jointly controlled by sedimentation, diagenesis, hydrocarbon generation conditions?, reservoir bed properties and the occurrence process of natural gas. The natural gas underwent short-distance migration and accumulation, in-place accumulation in the early stage, and adjustment and modification in the later stage. Finally, the Yulin (well Y1) and Tazhong (well T1) areas are identified as the targets for shale gas exploration in the Tarim Basin.  相似文献   

6.
7.
The former stratigraphic chart of the Cambrian in the Turukhansk–Irkutsk–Olekma region of the Siberian Platform was compiled in 1986 and approved in 1988. Large amounts of data were obtained from new wells drilled in the western and northern parts of the region during the preceding 20 years. Modifications necessitated by new data entail an indefinitely continuous series of revised facies zonation, recognition of new facies areas, regions and zone, as well as definition of a regional early Mayan stratigraphic hiatus. A new local stratigraphic division is the Olenchima Member (base of the Evenk Formation) underlain by a hiatus. The term Kochumdek Formation is no longer used in the Bakhta region and its lithologically distinct subformations (Yasenga, Moktakon, Mara, and Abakun) were raised to formation rank. The Olenchima Formation is no longer used in the Baikit zone; but instead, the Litvintsevo Formation was established here by correlation.  相似文献   

8.
9.
International Journal of Earth Sciences - The volcanism hosted by the Ediacaran–Terreneuvian Canaveilles Group of the Eastern Pyrenees displays two distinct geochemical affinities: (1)...  相似文献   

10.
We generalize results of geological, geochronological, geochemical, and isotope-geochemical studies of the Vendian–Early Cambrian island-arc plagiogranitoid magmatism in the Altai–Sayan folded area and in the Lake Zone of western Mongolia. Based on these data, we analyzed the scales of development of plagiogranitoid magmatism, studied the petrologic composition and isotope characteristics of granitoids, and established the main sources of plagiogranitoid-generating melts and the leading mechanisms of formation of Early Caledonian juvenile crust.  相似文献   

11.
Conodonts from the Cambrian–Ordovician transition at the Liangcun section in Xishui County, Guizhou and at the Huangcao section in Wulong County, Chongqing are examined for the first time. Both sections are located at the southeast margin of the Sichuan Basin. A total of 1367 specimens were recovered, representing 30 species and 15 genera. Based on the ranges of conodonts generalized from these two sections and another six sections previously studied in the same region, three conodont zones, Cordylodus proavus, Monocostodus sevierensis and Cordylodus angulatus zones are recognized. The index species of the Cambrian–Ordovician boundary at the global stratotype section and point (GSSP), Iapetognathus fluctivagus and its substitute in China Iapetognathus jilinensis are not observed in the study sections, therefore it is impossible to determine the Cambrian–Ordovician boundary exactly. However, it probably lies within the lower part of M. sevierensis zone (the upper part of the Loushanguan Group), correlating with the GSSP in Canada and the Dayangcha section in China. Chronological sequences of the FAD (First Appearance Datum) of C. angulatus, Chosonodina herfurthi and Rossodus manitouensis are not obvious in the study, so the C. angulatus zone here is correlated with zones defined by C. angulatus, Ch. herfurthi and R. manitouensis in the lower Yangtze Platform.  相似文献   

12.
The black shale series that formed in the Ediacaran–Cambrian transition are important stratigraphic records of the co-evolution of the paleo-ocean, -climate, and -biology. In this study, we measured Re–Os isotopic compositions of the black shale in the Niutitang Formation from the Gezhongwu section in Zhijin, Guizhou Province. The samples had high Re and Os contents, with Re ranging from 21.27 to 312.78 ng/g and Os ranging from 0.455 to 7.789 ng/g. The Re–Os isotope isochron age of 522.9 ± 8.6 Ma implies deposition of the Niutitang black shale predated the Chengjiang Fauna, providing an age constraint for the expansion of oceanic anoxia in the study area. The initial 187Os/188Os ratio of 0.826 ± 0.026 indicates that enhanced continental weathering might have triggered the expansion of the oceanic anoxia.  相似文献   

13.
The major, trace and rare earth element (REE) contents of metapelite (MPL), metapsammite (MPS) and metamarl (MM) samples from the Cambro-Ordovician Seydi?ehir Formation were analyzed to investigate their provenance and tectonic setting. The MPS, MPL, and MM samples have variable SiO2 concentrations, with average values of 72.36, 55.54, and 20.95 wt%, moderate SiO2/Al2O3 ratios (means of 6.88, 3.23, and 3.80), moderate to high Fe2O3 + MgO contents (means of 5.14, 9.55, 3.56 wt%), and high K2O/Na2O ratios (means of 3.26, 3.64, 2.90), respectively. On average, the chemical index of alteration (CIA) values of the MPS and the MPL are 65.87 and 71.96, respectively, while the chemical index of weathering (CIW) values are 74.54 and 85.09, respectively. These data record an intermediate to high degree of alteration (weathering) of plagioclase to illite/kaolinite in the samples’ provenance. The chondrite-normalized REE patterns of all the sample groups are similar and are characterized by subparallel light rare earth elements (LREE)-enriched, relatively flat heavy rare earth elements (HREE) patterns with pronounced Eu anomalies (mean of 0.69) and moderate fractionation [average (La/Yb)N = 8.7]. Plots of sediments in ternary diagrams of La, Th, Sc and elemental ratios (La/Sc, Th/Sc, Cr/Th, Eu/Eu*, La/Lu, Co/Th, La/Sc and Sc/Th), which are critical for determining provenance, and REE patterns indicate that the metaclastic units of the Seydi?ehir Formation were derived dominantly from felsic to intermediate magmatic rocks and not from a mafic source. The La–Sc–Th and Th–Sc–Zr/10 ternary diagrams of the Seydi?ehir Formation are typical of continental island arc/active continental margin tectonic settings. The geologic location and geochemistry of the Seydi?ehir Formation suggest that it was deposited in an Andean-type retroarc foreland basin during the Late Cambrian–Early Ordovician period. The Neoproterozoic intermediate to felsic magmatic rocks and metaclastic sediments with felsic origins of the Sand?kl?–Afyon Basement Complex (SBC) and their equivalent units, which are thought to be overlain by the younger units in the study area, may be the dominant source rocks for the Seydi?ehir Formation.  相似文献   

14.
This paper presents a conodont biostratigraphic study on the Upper Cambrian Sesong and Hwajeol Formations in the Sabuk area, Korea. Two samples near the base of the Sesong Slate at the Pukil section contain lower Upper Cambrian conodonts, comprising Furnishina furnishi, F. kranzae, F. pernical, F. triangulate, Hertzina elongata, Laiwugnathus doidyxus?, Phakelodus elongatus, Muellerodus? obliquus, Westergaardodina matsushitai and W. moessebergensis. This is the first conodont record of the Upper Cambrian formations recovered yet in the northern limb of the Paekunsan syncline. The faunal assemblage is correctable with the lower Upper Cambrian W. matsushitai Zone of North China. Four local biozones are recognized in the Hwajeol Formation, i.e. the Proconodontus, Eoconodontus notchpeakensis, Cambrooistodus minutus and Cordylodus proavus Zones in ascending order. This zonal scheme is essentially equivalent to that of the southern limb of the Paekunsan syncline and they are correlatable with zones in other pa  相似文献   

15.
The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with εNd between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm–Nd isochron yielded an age of 655 ± 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)–Cambrian age of deposition.The Guarguaraz metasedimentary–ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordón del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana.  相似文献   

16.
Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.  相似文献   

17.
The carbonate sediments from the Vendian–Cambrian shelf of the Tuva-Mongolian microcontinent were dated by Sr and C isotope chemostratigraphy. Analysis of the Sr-isotopic characteristics (0.70725–0.70873) and δ13C variations (+ 10.5 to –3.5‰), as well as their comparison with the data on the key sections of Siberia, Africa, Central Asia, Australia, South America, and Spitsbergen, showed that the carbonate sedimentary cover of the Tuva-Mongolian microcontinent accumulated at 600–520 Ma and the carbonate sediments of the Muren Formation and the basal beds of the Bokson Group near the Ukha-Gol River are the oldest. Their sedimentation followed the Marinoan global glaciation.  相似文献   

18.
Saturated hydrocarbon biomarkers were studied in bitumens from organic matter (OM) in the Lower and Middle Cambrian Kuonamka Complex in the Lena–Amga interfluve of East Siberia. Their contents and distribution were analyzed. It was established that OM of siliceous and carbonate rocks from the lower part of the sequence differs from OM of overlying mainly mixed siliceous–carbonate rocks in terms of distribution of alkanes, steranes, tricyclanes, hopanes, and ratios of their homologs. It was concluded that the peculiarities of molecular composition of OM in the rocks are related to the biochemistry of microorganism communities, the remains of which were accumulated in sediments of Cambrian sea. It is possible that the microbiota changed its composition in response to a sharp change of sedimentation settings, which follows from biomarker proxies. It is suggested that sediments in the lower part of the sequence were formed under conditions of H2S contamination. Catagenesis of OM and contribution of the Lower and Middle Cambrian potentially oil-generating rocks in naphthide generation on the northern slope of the Aldan anteclise are discussed.  相似文献   

19.
Petrographic, geochemical and field studies in low grade metamorphic areas (Ciudad Rodrigo-Hurdes-Sierra de Gata domain, CRHSG, central-western Spain) show that Neoproterozoic-Lowermost Cambrian series in the Central Iberian Zone (CIZ) record two kinds of provenance sources including: (1) detrital material derived from recycled orogens and (2) a Cadomian coeval juvenile contribution that governs their isotopic signature. Evidence of magmatism contemporaneous with Neoproterozoic-Cambrian sedimentation is provided by the presence of coherent, massive volcanic rocks (metabasalts, metaandesites, and metarhyolites), volcaniclastic shales, sandstones, conglomerates and breccias. The appearance of volcanogenic lithic fragments and crystals mixed in different proportions with siliciclastic constituents and also present within calcareous components in the sedimentary succession, reinforces this evidence. Although most of the selected volcanic and volcaniclastic samples appear to show tholeiitic affinity, some of them display calc-alkaline affinity. Different trace element ratios, such as Sm/Nd, Nb/Yb and Ta/Yb, suggest a magmatic evolution in the same tectonic setting. The geochemical results reported here support the existence of an active geodynamic setting as a direct contributor to the synsedimentary and magmatic content of the Neoproterozoic–Lowermost Cambrian successions in the CIZ. In particular, the relatively high Nd (T) values and the high range of f Sm/Nd ratios are consistent with an active margin during the Neoproterozoic–Early Cambrian. The existence of tectonic activity is also confirmed by the presence of synsedimentary deformation and volcanic rocks. All of these traits favour a geodynamic model in which the Iberian Cadomian segment represented in the CIZ would have been part of an active northern margin of Gondwana, with an associated magmatic arc and related basins during Neoproterozoic–Lower Cambrian times. A proposed link between the Ossa Morena and the Central Iberian Zones might account for late Cadomian pull-apart basins developed on both sides of the magmatic arc, sharing the same scenario and involving similar magmatic activity during the Neoproterozoic–Cambrian transition.
M. D. Rodríguez-AlonsoEmail: Phone: +34-923-294498Fax: +34-923-294514
  相似文献   

20.
The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China. It is presently also the deepest basin for petroleum exploration and development in the world. There are two main sets of marine Source Rocks (SRs) in the Tarim Basin, namely the high over-mature Cambrian–Lower Ordovician (∈–O1) and the moderately mature Middle–Upper Ordovician (O2–3). The characteristic biomarkers of SRs and oils indicate that the main origin of the marine petroleum is a mixed source of ∈–O1 and O2–3 SRs. With increasing burial, the hydrocarbon contribution of the ∈–O1 SRs gradually increases. Accompanied by the superposition of multi-stage hydrocarbon-generation of the SRs and various secondary alteration processes, the emergence and abnormal enrichment of terpenoids, thiophene and trimethylaryl isoprenoid in deep reservoirs indicate a complex genesis of various deep oils and gases. Through the analysis of the biofacies and sedimentary environments of the ∈–O1 and O2–3 SRs, it is shown that the lower Paleozoic high-quality SRs in the Tarim Basin were mainly deposited in a passive continental margin and the gentle slope of the platform, deep-water shelf and slope facies, which has exhibited a good response to the local tectonic-sedimentary environment. The slope of the paleo-uplift is the mutual area for the development of carbonate reservoirs and the deposition of marine SRs, which would be favorable for the accumulation of petroleum. Due to the characteristics of low ground temperature, the latest rapid and deep burial does not cause massive oil-cracking in the paleo-uplift and slope area. Therefore, it is speculated that the marine reservoirs in the slope of the Tabei Uplift are likely to be a favorable area for deep petroleum exploration, while the oil-cracking gas would be a potential reserve around the west margin of the Manjiaer Depression. Hydrocarbons were generated from various unit SRs, mainly migrating along the lateral unconformities or reservoirs and the vertical faults. They eventually brought up three major types of exploration fields: middle and lower Cambrian salt-related assemblages, dolomite inner reservoirs and Middle and Lower Ordovician oil-bearing karst, which would become the most favorable target of marine ultra-deep exploration in the Tarim Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号