首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The application of Stokes’s formula to determine the geoid height requires that topographic and atmospheric masses be mathematically removed prior to Stokes integration. This corresponds to the applications of the direct topographic and atmospheric effects. For a proper geoid determination, the external masses must then be restored, yielding the indirect effects. Assuming an ellipsoidal layering of the atmosphere with 15% increase in its density towards the poles, the direct atmospheric effect on the geoid height is estimated to be −5.51 m plus a second-degree zonal harmonic term with an amplitude of 1.1 cm. The indirect effect is +5.50 m and the total geoid correction thus varies between −1.2 cm at the equator to 1.9 cm at the poles. Finally, the correction needed to the atmospheric effect if Stokes’s formula is used in a spherical approximation, rather than an ellipsoidal approximation, of the Earth varies between 0.3 cm and 4.0 cm at the equator and pole, respectively.  相似文献   

2.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

3.
When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information. Received: 11 August 1997 / Accepted: 18 August 1998  相似文献   

4.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

5.
In the determination of the preliminary geoid over Zambia, we compare three methods of the modified Stokes formula: that of Vincent and Marsh, a modified Wong and Gore method, and a modified spectral weighting method, with the final solution being estimated by the modified Wong and Gore procedure. The geoid over Zambia (based on GRS80) is rising from north-east to south-west. It coincides with the reference ellipsoid in the north-western and southern regions of Zambia. The preliminary estimate indicates maximum and minimum values of about 13.7 and −16.8m, respectively. The mean geoid over the area is −2.8m. Formal analysis of global root mean square errors for the three models leads us to conclude that for an integration cap radius of about 3 or less, the modified formula using optimal spectral weighting is superior to the Vincent and Marsh method, and to the modified and unmodified Wong and Gore. Received: 8 October 1996 / Accepted: 25 June 1997  相似文献   

6.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

7.
By minimizing the global distance between the (quasi-) geoid and an ellipsoid of revolution, the best parameters of an ellipsoid and its location parameters are estimated. Input data are the absolute value of the geopotential at (quasi-) geoid level, a set of harmonic coefficients from satellite, terrestrial or combined observations, the mean rotational speed of the earth, and approximate values of the seminajor axis and the eccentricity of the ellipsoid. The output ranges from 6378137,63 m and 6378141,62 m for the best semimajor axis and from 298.259758 and 298.259651 for the reciprocal value of the best ellipsoidal flattening within WD 1 and WD 2. The best translational parameters are 6.4 cm (Greenwich-direction), 0.8 cm (orthogonal to Greenwich-direction), and 1.9 cm (parallel to rotational axis of the earth); the best rotational parameters are −0.2” (around Greenwich-direction) and 1.1” (around orthogonal to Greenwich-direction). The dependence of the datum of the (quasi-) geoid geopotential is studied in detail.  相似文献   

8.
 This paper generalizes the Stokes formula from the spherical boundary surface to the ellipsoidal boundary surface. The resulting solution (ellipsoidal geoidal height), consisting of two parts, i.e. the spherical geoidal height N 0 evaluated from Stokes's formula and the ellipsoidal correction N 1, makes the relative geoidal height error decrease from O(e 2) to O(e 4), which can be neglected for most practical purposes. The ellipsoidal correction N 1 is expressed as a sum of an integral about the spherical geoidal height N 0 and a simple analytical function of N 0 and the first three geopotential coefficients. The kernel function in the integral has the same degree of singularity at the origin as the original Stokes function. A brief comparison among this and other solutions shows that this solution is more effective than the solutions of Molodensky et al. and Moritz and, when the evaluation of the ellipsoidal correction N 1 is done in an area where the spherical geoidal height N 0 has already been evaluated, it is also more effective than the solution of Martinec and Grafarend. Received: 27 January 1999 / Accepted: 4 October 1999  相似文献   

9.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

10.
    
When the values of gravity anomalies are given at the geoid, Ag can be calculated at altitude by application of Poisson’s integral theorem. The process requires integration of Δg multiplied by the Poisson kernel function over the entire globe. It is common practice to add to the kernel function terms that will ensure removal of any zeroth and first order components of Δg that may be present. The effects of trancating the integration at the boundary of a spherical cap of earth central half angle ψo have been analyzed using an adaptation of Molodenskii’s procedure. The extension process without removal terms retains the correct effects of inaccuracies in the constant term of the gravity reference model used in the definition of Δg. Furthermore, the effects of ignoring remote zones or unmapped areas in the integration process are very much smaller for the extension without removal terms than for the commonly used formula with removal terms. For these reasons the Poisson vertical extension process without removal terms is to be preferred over the extension with the zeroth order term removal. Truncation of this process at the point recommended for the Stokes integration, namely, the first zero crossing of the Stokes kernel function, leaves negligible truncation errors.  相似文献   

11.
A method is presented with which to verify that the computer software used to compute a gravimetric geoid is capable of producing the correct results, assuming accurate input data. The Stokes, gravimetric terrain correction and indirect effect formulae are integrated analytically after applying a transformation to surface spherical coordinates centred on each computation point. These analytical results can be compared with those from geoid computation software using constant gravity data in order to verify its integrity. Results of tests conducted with geoid computation software are presented which illustrate the need for integration weighting factors, especially for those compartments close to the computation point. Received: 6 February 1996 / Accepted: 19 April 1997  相似文献   

12.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

13.
The method of analytical downward continuation has been used for solving Molodensky’s problem. This method can also be used to reduce the surface free air anomaly to the ellipsoid for the determination of the coefficients of the spherical harmonic expansion of the geopotential. In the reduction of airborne or satellite gradiometry data, if the sea level is chosen as reference surface, we will encounter the problem of the analytical downward continuation of the disturbing potential into the earth, too. The goal of this paper is to find out the topographic effect of solving Stoke’sboundary value problem (determination of the geoid) by using the method of analytical downward continuation. It is shown that the disturbing potential obtained by using the analytical downward continuation is different from the true disturbing potential on the sea level mostly by a −2πGρh 2/p. This correction is important and it is very easy to compute and add to the final results. A terrain effect (effect of the topography from the Bouguer plate) is found to be much smaller than the correction of the Bouguer plate and can be neglected in most cases. It is also shown that the geoid determined by using the Helmert’s second condensation (including the indirect effect) and using the analytical downward continuation procedure (including the topographic effect) are identical. They are different procedures and may be used in different environments, e.g., the analytical downward continuation procedure is also more convenient for processing the aerial gravity gradient data. A numerical test was completed in a rough mountain area, 35°<ϕ<38°, 240°<λ<243°. A digital height model in 30″×30″ point value was used. The test indicated that the terrain effect in the test area has theRMS value ±0.2−0.3 cm for geoid. The topographic effect on the deflections of the vertical is around1 arc second.  相似文献   

14.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

15.
The geodetic boundary value problem is formulated which uses as boundary values the differences between the geopotential of points at the surface of the continents and the potential of the geoid. These differences are computed by gravity measurements and levelling data. In addition, the shape of the geoid over the oceans is assumed to be known from satellite altimetry and the shape of the continents from satellite results together with three-dimensional triangulation. The boundary value problem thus formulated is equivalent to Dirichlet's exterior problem except for the unknown potential of the geoid. This constant is determined by an integral equation for the normal derivative of the gravitational potential which results from the first derivative of Green's fundamental formula. The general solution, which exists, of the integral equation gives besides the potential of the geoid the solution of the geodetic boundary value problem. In addition approximate solutions for a spherical surface of the earth are derived.  相似文献   

16.
Canadian gravimetric geoid model 2010   总被引:4,自引:1,他引:3  
A new gravimetric geoid model, Canadian Gravimetric Geoid 2010 (CGG2010), has been developed to upgrade the previous geoid model CGG2005. CGG2010 represents the separation between the reference ellipsoid of GRS80 and the Earth’s equipotential surface of $W_0=62{,}636{,}855.69~\mathrm{m}^2\mathrm{s}^{-2}$ W 0 = 62 , 636 , 855.69 m 2 s ? 2 . The Stokes–Helmert method has been re-formulated for the determination of CGG2010 by a new Stokes kernel modification. It reduces the effect of the systematic error in the Canadian terrestrial gravity data on the geoid to the level below 2 cm from about 20 cm using other existing modification techniques, and renders a smooth spectral combination of the satellite and terrestrial gravity data. The long wavelength components of CGG2010 include the GOCE contribution contained in a combined GRACE and GOCE geopotential model: GOCO01S, which ranges from $-20.1$ ? 20.1 to 16.7 cm with an RMS of 2.9 cm. Improvement has been also achieved through the refinement of geoid modelling procedure and the use of new data. (1) The downward continuation effect has been accounted accurately ranging from $-22.1$ ? 22.1 to 16.5 cm with an RMS of 0.9 cm. (2) The geoid residual from the Stokes integral is reduced to 4 cm in RMS by the use of an ultra-high degree spherical harmonic representation of global elevation model for deriving the reference Helmert field in conjunction with a derived global geopotential model. (3) The Canadian gravimetric geoid model is published for the first time with associated error estimates. In addition, CGG2010 includes the new marine gravity data, ArcGP gravity grids, and the new Canadian Digital Elevation Data (CDED) 1:50K. CGG2010 is compared to GPS-levelling data in Canada. The standard deviations are estimated to vary from 2 to 10 cm with the largest error in the mountainous areas of western Canada. We demonstrate its improvement over the previous models CGG2005 and EGM2008.  相似文献   

17.
The solutions of four ellipsoidal approximations for the gravimetric geoid are reviewed: those of Molodenskii et al., Moritz, Martinec and Grafarend, and Fei and Sideris. The numerical results from synthetic tests indicate that Martinec and Grafarends solution is the most accurate, while the other three solutions contain an approximation error which is characterized by the first-degree surface spherical harmonic. Furthermore, the first 20 degrees of the geopotential harmonic series contribute approximately 90% of the ellipsoidal correction. The determination of a geoid model from the generalized Stokes scheme can accurately account for the ellipsoidal effect to overcome the first-degree surface spherical harmonic error regardless of the solution used.  相似文献   

18.
A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.  相似文献   

19.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

20.
Fast and accurate relative positioning for baselines less than 20 km in length is possible using dual-frequency Global Positioning System (GPS) receivers. By measuring orthometric heights of a few GPS stations by differential levelling techniques, the geoid undulation can be modelled, which enables GPS to be used for orthometric height determination in a much faster and more economical way than terrestrial methods. The geoid undulation anomaly can be very useful for studying tectonic structure. GPS, levelling and gravity measurements were carried out along a 200-km-long highly undulating profile, at an average elevation of 4000 m, in the Ladak region of NW Himalaya, India. The geoid undulation and gravity anomaly were measured at 28 common GPS-levelling and 67 GPS-gravity stations. A regional geoid low of nearly −4 m coincident with a steep negative gravity gradient is compatible with very recent findings from other geophysical studies of a low-velocity layer 20–30 km thick to the north of the India–Tibet plate boundary, within the Tibetan plate. Topographic, gravity and geoid data possibly indicate that the actual plate boundary is situated further north of what is geologically known as the Indus Tsangpo Suture Zone, the traditionally supposed location of the plate boundary. Comparison of the measured geoid with that computed from OSU91 and EGM96 gravity models indicates that GPS alone can be used for orthometric height determination over the Higher Himalaya with 1–2 m accuracy. Received: 10 April 1997 / Accepted: 9 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号