首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
赵罡  王小亚  吴斌 《测绘学报》2012,41(2):165-170
质心改正是利用卫星激光测距资料进行精密定轨过程中必须修正的一项系统偏差,数值模拟和理论分析均已显示,由于卫星形状效应,质心改正存在对测站系统运行模式的依赖性,即不同测站对卫星质心的改正是不同的。本文首次分析了这种依赖性对卫星定轨精度的影响。长时间序列的统计结果表明,与全球统一测站卫星质心改正相比,采用不同测站卫星质心不同改正系统性地提高了短弧定轨精度。对Lageos-1/2,平均提高约0.4毫米;对Etalon-1/2,平均提高约0.6毫米。在各种相关应用对卫星激光测距数据处理精度要求迈向毫米级的今天,有必要考虑不同测站卫星质心不同改正。  相似文献   

2.
卫星轨道的精密确定是利用GNSS进行高精度导航和定位的前提。我国北斗二代卫星导航系统正处于建设阶段,在精密定轨方面还存在着尚未完全组网、观测数据较少、跟踪站局限于国内等不足。北斗卫星在对地一侧都安装了激光后向反射器,可以实施卫星激光测距。本文研究了利用SLR观测数据进行北斗卫星精密定轨的算法,并通过编程进行了实验。实验结果表明,利用SLR进行定轨的精度可以达到米级。  相似文献   

3.
基于卫星激光测距定轨是目前遥感卫星在轨位置测量的重要手段之一,其测量精度关系到遥感卫星的应用水平。为了分析我国首颗民用立体测绘卫星——资源三号携带的国产激光角反射器在轨运行情况,该文利用全球激光联测期间卫星激光测距数据与GPS事后联合定轨结果,从遥感影像几何定位和轨道预报两个方面定量分析和评价卫星激光测距参与的定轨精度。试验表明,基于卫星激光测距与GPS定轨结果,影像几何定位无控精度较实时定轨精度提升1~2m,有效提升了卫星影像几何处理精度;轨道预报1d星下点位置较实际过境轨迹偏差优于250m,2d优于500m,1d预报侧摆精度达到0.035°,满足检校外业和成像计划精度需求。  相似文献   

4.
<正> 《卫星激光测距法》:卫星激光测距仪测定地面观测站至卫星距离的方法。卫星激光测距仪自地面观测站发射激光至人造卫星上的反射器,又自反射器反射回地面观测站,用望远镜接收返回的激光信号,并准确记录往返时间,据以推算卫星到测站的距离。测距精度小于一米。利用卫星激光测距资料,可求定卫星的精确轨道、地球引力场、地极移动、板块运动、固体潮等。还可用于卫星大地测量和测定几千公里长  相似文献   

5.
依据地月激光测距的成功实践和对卫星激光定轨的基础研究,提出了用地面对嫦娥卫星作激光测距的方法,高精度地测定嫦娥卫星绕月飞行时的实时在轨位置,论述了多站激光定轨和单站激光定轨的解算数模。  相似文献   

6.
目前,BDS-3卫星上已全部搭载星间链路设备,可利用星间双向测量数据分离卫星相对钟差和相对几何距离解耦卫星轨道和钟差,再把星间距离作为观测量结合地面测量数据进行星地星间联合定轨。人卫激光测距(SLR)技术不受载波相位模糊度、钟差等因素的影响,数据处理过程相对于GNSS技术的数据处理更简单,可以作为一种独立于GNSS观测技术的测量手段。所有BDS卫星上已搭载激光角反射器,因此本文利用2020年1月北斗星间链路数据及少量SLR数据对11颗BDS-3卫星(MEO/IGSO/GEO)进行联合精密定轨试验。分析结果表明,基于SLR和星间链路的3类轨道类型的BDS-3卫星定轨精度相当,轨道精度径向为4.2 cm,三维精度为30.2 cm;卫星轨道预报12 h和24 h MEO卫星三维精度约40.0 cm,IGSO三维精度优于60.0 cm;GEO卫星三维精度约1.0 m。在精密定轨的同时解算地球自转参数(ERP),由于激光数据量少,极移精度约3.0 mas,日长变化精度为0.35 ms。利用少量SLR观测数据和星间链路测量数据联合可以实现导航卫星的高精度定轨,如果能够对BDS卫星加强激光观测,有助于提升轨道精度,为BDS自主可控空间基准参数解算提供参考。  相似文献   

7.
地球静止轨道GEO卫星定轨是精密定轨领域的难点.依托我国区域范围地面跟踪网实际,提出了转发式测距数据支持下的GEO导航卫星精密定轨方案.从定轨精度、设备时延和伪距站对GEO轨道精度影响等方面进行了深入分析.试验结果证明:1 ns的时延误差引进的GEO轨道径向和位置误差分别为0.121 m和3.505 m.在多个转发式测距跟踪站约束的条件下伪距对定轨精度贡献非常有限,但通过星地钟差的估计可以实现时间同步,同步精度优于1 ns.这为时间同步提供了一种新的方法.当转发式测距跟踪站有限时伪距对GEO定轨的贡献非常明显,1CC(转发式跟踪站)+7L(伪距站)联合定轨条件下的轨道精度优于5 m.从而解决了GEO卫星精密定轨问题,同时实现了星地和站间时间同步以及卫星轨道与钟差参数的自洽.  相似文献   

8.
乔晶  陈武 《测绘学报》2016,45(Z2):116-131
卫星自主定轨是提高全球卫星导航系统(GNSS)可靠性、稳健性、完整性和生存能力的重要保证。新一代的北斗卫星已可以进行星间链路测距,从而达到提高卫星全球跟踪能力以及实现整个卫星导航系统的自主定轨。然而由于卫星运行会受到多种摄动力的影响,如果不能对这些摄动力进行精密的改正,在没有地面或其他天体提供绝对约束的条件下,导航系统会随着自主定轨时间的延长出现星座整体旋转。卫星所受摄动力分为保守力和非保守力两部分:对于保守力,如地球非球形摄动、潮汐摄动、太阳月球和其他三体引力,现在已有的力学模型可以很精确地进行改正;而非保守力(如太阳光压摄动),则难以用精确的模型进行改正,因此成为影响卫星定轨精度的主要因素。星载加速度计可以高精度地测量非保守力,并已成功应用于重力卫星(CHAMP、GRACE、GOCE)的重力场反演与大气研究中。本文研究主要探讨采用星上加速度计提高北斗卫星自主定轨精度和延长自主定轨时长的可行性。利用模拟的卫星轨道和星间链路数据,以及现有的星载加速度计误差模型,对北斗卫星系统分别使用星间链路数据和星间链路与加速度计组合数据,进行自主定轨与精度评定。计算结果表明,使用星间链路与星载加速度计数据进行自主定轨,较单纯使用星间链路数据精度具有明显改进。在模拟的星间测距观测数据具有0.33m随机噪声以及分米级系统误差,自主定轨两个月的情况下,联合使用加速度计数据的自主定轨IGSO和MEO卫星精度为分米级,而仅使用星间链路数据的定轨精度约为3~6m,比使用加速度计精度低一个量级。  相似文献   

9.
采用HY2A卫星2013年2月的实测数据,研究了GPS、星载多谱勒无线电定轨定位系统(DORIS)及卫星激光测距(SLR)三种观测数据的单独和联合定轨问题。通过与法国CNES的精密轨道数据比较发现:分别采用GPS、DORIS和SLR数据进行单独定轨,GPS数据确定轨道的径向平均精度为1.3cm,三维位置约为6.2cm;DORIS定轨的径向平均精度为1.6cm,比GPS结果略差;SLR确定轨道的径向平均精度为2.3cm。用GPS、DORIS和SLR三种数据联合定轨,确定轨道的径向平均精度为1.2cm,三维位置约为6.5cm。与星载GPS定轨结果比较,三种观测数据的联合定轨在提高卫星轨道确定精度上不明显,但联合定轨有利于保持计算轨道精度相对稳定。用站星间高度角大于60°的SLR数据检验GPS/DORIS联合确定的轨道,两者在测距方向的均方差为2.5cm,可见基于HY2A的观测数据可以实现cm级的定轨需求。  相似文献   

10.
益鹏举  赵春梅  郑作亚 《测绘科学》2011,36(3):32-33,39
本文基于卫星精密定轨的基本理论,研究了GRACE卫星非差简化动力学定轨的方法;并用自行研制的定轨软件CASMORD对实测的星载GPS数据进行非差数据的简化动力学定轨,通过比较GRACE卫星解算的轨道与JPL事后轨道及SLR测距信息,结果表明:利用非差观测值进行CRACE卫星的简化动力学定轨,三维位置精度(3D-RMS)...  相似文献   

11.
姿态模式切换期间QZSS卫星轨道及其钟差产品特性分析   总被引:1,自引:1,他引:0  
导航卫星姿态控制模式切换对精密定轨解算得到的轨道和钟差均有较大影响。本文首先从理论上分析了卫星偏航姿态及其对精密定轨的影响,然后分别以卫星激光测距检核和钟差多项式拟合的方法对IGS MGEX分析中心的QZSS卫星轨道和钟差产品精度进行评价,最后以谱分析方法和改进阿伦方差揭示了卫星钟差的周期特性。基于2014年全年的QZSS卫星轨道和钟差产品的研究表明,一年内有两次长约20 d的地影季,太阳角呈现半年周期的波动;QZSS卫星在低太阳角时有零偏保护,其卫星轨道和钟差精度都与太阳角有显著相关性;卫星钟差具有与轨道周期相近的周期项,且周期项振幅与太阳角的大小也具有相关性,表明现有的定轨策略存在不足。考虑到QZSS与目前北斗星座中IGSO和MEO卫星姿态控制模式的相似性,该结论对于研究我国BDS姿态切换期间的精密定轨有一定参考价值。  相似文献   

12.
星蚀期北斗卫星轨道性能分析——SLR检核结果   总被引:1,自引:0,他引:1  
星蚀期北斗卫星的轨道性能是北斗卫星导航系统性能分析的重要部分。了解北斗卫星导航系统星历中星蚀期轨道的精度,不仅可为系统服务性能评估提供支持,还有助于了解星蚀期精密定轨中相关模型可能存在的问题,进而为精密定轨函数模型改进提供参考。本文基于2014年1月至2015年7月的卫星激光测距资料,重点分析了星蚀期对北斗不同类型卫星轨道的影响,同时也对北斗广播星历和精密星历中整体轨道径向精度进行检核。结果表明:星蚀期内(尤其是偏航机动期间),IGSO/MEO卫星的广播星历和精密星历轨道均存在明显的精度下降;广播星历轨道径向误差达1.5~2.0m,精密星历轨道径向误差超过10.0cm。但仅从轨道径向残差序列中难以发现星蚀期对GEO卫星轨道是否有显著影响。非星蚀期间,IGSO/MEO卫星和GEO卫星的广播星历轨道径向精度分别优于0.5 m和0.9 m。IGSO/MEO卫星的精密星历轨道径向精度优于10.0cm,GEO卫星的轨道径向精度约50.0cm,且存在40.0cm左右的系统性偏差。  相似文献   

13.
针对北斗导航卫星系统首创的GEO+IGSO+MEO混合星座设计,本文研究了根据不同星座,采取不同约束条件和数据处理策略的北斗卫星精密定轨方法,提出了一种针对北斗系统混合星座的分层约束精密定轨方案。该方案首先将北斗卫星分为非GEO(IGSO/MEO)和GEO两部分进行解算,利用GPS解算的公共参数对北斗IGSO/MEO精密定轨形成有效约束,然后固定GPS和北斗IGSO/MEO解算结果,最后单独对北斗GEO卫星进行强约束下的轨道解算。利用实测数据进行了精密定轨试验,试验结果表明:采用本文提出的方法,北斗GEO卫星和非GEO卫星三维重叠弧段轨道精度分别为0.688 m和0.042 m,比传统方法分别提高了54.2%和72.4%。另外,采用激光测距检核和测站坐标静态精密单点定位的方法对轨道精度进行了验证,激光检核精度提高了44.3%,测站坐标在水平和高程方向上精度分别平均提升了21.5%和20.7%。  相似文献   

14.
人造卫星激光测距作为当前精度最高的现代大地测量手段之一,其观测数据在卫星或航天器的精密定轨、确定地球自转参数、建立和维护全球地球参考框架以及实现全球范围的高精度时间传递等方面发挥重要作用。在轨卫星的位置预报是卫星激光测距工作实现的前提和基础,为此,本文根据卫星激光测距工作的实际需要对在轨卫星的预报精度提出了要求,并分析CPF卫星预报的精度。研究结果显示,卫星预报精度完全可以满足当前毫米级卫星激光测距的要求。  相似文献   

15.
刘宇琼  张耀文  吴吉贤 《测绘工程》2007,16(2):36-38,50
论述了利用SLR检核IGS提供的GPS卫星精密轨道的方法。采用2005年9月1日到30日的SLR观测数据对IGS提供的GPS35卫星精密轨道进行了检核实验,实验结果表明,SLR观测站存在一定的系统偏差,IGS提供的精密轨道没有明显的系统偏差,其精度优于2 cm。  相似文献   

16.
北斗卫星的姿态控制分为动态偏置、零偏置和连续动偏3种,不同类型卫星、不同姿态控制模式、不同时段下定轨精度不一致,影响了北斗系统的连续性。详细研究了北斗不同类型卫星在不同姿态控制模式下的最优定轨策略,并基于实测数据进行试验,结果表明,BeiDou-2 IGSO(inclined geosynchronous orbit)/MEO(medium earth orbit)卫星采用基于星地钟差约束下多星定轨方法和ECOM(extended CODE model)5参数模型相结合的方法定轨精度最优,零偏期间,用户等效距离误差值为2.08 m,全球激光评估轨道视向精度约为1 m;BeiDou-3 IGSO/MEO卫星采用常规多星定轨和ECOM 5参数模型相结合的方法定轨精度最优;连续动偏期间,用户等效距离误差值为1.22 m,全球激光评估轨道视向精度为0.23 m,与动偏期间精度一致;GEO(geostationary earth orbit)卫星在春秋分附近时段采用基于星地钟差约束下多星定轨方法和ECOM 9参数模型相结合的方法定轨精度最优,用户等效距离误差值为0.72 m。  相似文献   

17.
Precise orbit determination of BeiDou constellation: method comparison   总被引:3,自引:1,他引:2  
Chinese BeiDou navigation satellite system is in official service as a regional constellation with five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites and four medium earth orbit (MEO) satellites. There are mainly two methods for precise orbit determination of the BeiDou constellation found in the current literatures. One is the independent single-system method, where only BeiDou observations are used without help from other GNSS systems. The other is the two-step GPS-assisted method where in the first step, GPS data are used to resolve some common parameters, such as station coordinates, receiver clocks and zenith tropospheric delay parameters, which are then introduced as known quantities in BeiDou processing in the second step. We conduct a thorough performance comparison between the two methods. Observations from the BeiDou experimental tracking stations and the IGS Multi-GNSS Experiment network from January 1 to March 31, 2013, are processed with the Positioning and Navigation Data Analyst (PANDA) software. The results show that for BeiDou IGSO and MEO satellites, the two-step GPS-assisted method outperforms the independent single-system method in both internal orbit overlap precision and external satellite laser ranging validation. For BeiDou GEO satellites, the two methods show close performances. Zenith tropospheric delays estimated from the first method are very close to those estimated from GPS precise point positioning in the second method, with differences of several millimeters. Satellite clock estimates from the two methods show similar performances when assessing the stability of the BeiDou on board clocks.  相似文献   

18.
王乐  张勤  黄观文  燕兴元  秦志伟 《测绘学报》2016,45(Z2):101-108
我国北斗二代系统(BDS)地面运控监测站数量较少且为区域分布,短期内难以实现全球建站,因此对全球运行的中圆地球轨道卫星(MEO)难以形成连续多重覆盖观测,导致BDS的MEO实时轨道精度偏低。基于上述问题,本文考虑到低轨卫星星载GNSS数据可以有效弥补区域监测站在空间覆盖及几何结构上的不足,设计了一种将星载GNSS接收机作为高动态天基监测站,联合地面区域监测站数据对卫星导航系统的MEO卫星轨道进行实时解算预报的方法。算例结果显示:7个区域监测站联合1至3个天基监测站,其定轨精度可分别提升约21%、34%和55%,这也表明,地面区域监测站联合天基低轨卫星数据可有效提高MEO卫星的轨道精度。建议我国BDS在区域测站分布阶段可采用联合低轨卫星数据方法提高北斗MEO卫星实时轨道精度。  相似文献   

19.
卫星激光测距(satellite laser ranging,SLR)作为一种完全独立于微波测量的测距方法,为GNSS(global navigation satellite system)广播星历精度评估提供了独立的外部检核手段。基于2013年4月~2014年7月的北斗卫星SLR数据,对北斗卫星导航系统正式提供服务后的广播星历精度进行了评估,推导了北斗地球静止轨道卫星激光残差近似表达式,分析了不同姿态模式下北斗倾斜地球同步轨道卫星、中圆地球轨道卫星激光残差特性。检核结果表明了参与国际激光联测的北斗卫星C01星广播星历精度为0.97 m、C08星为0.43 m、C10星为0.41 m、C11星为0.41 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号