首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Quaternary sedimentation in the Moshaweng dry valley of southeastern Botswana is evaluated on the basis of geomorphological evolution and sedimentological analyses. Stratigraphic evidence reveals an upper surface (1095 m) containing abundant sil‐calcrete, an intermediate surface (1085 m) in which sil‐calcrete underlies nodular calcrete and lower (1075 m) surface in which sil‐calcrete and nodular calcrete are interbedded. This subdivision is reflected in the geochemical composition of the sediments which show an overall trend of decreasing SiO2 content (and increasing CaCO3 content) with depth from the highest to the lowest surface levels. The calcretes and sil‐calcretes represent modifications of pre‐existing detrital Kalahari Group sand and basal Kalahari pebbles which thinned over a Karoo bedrock high. Modification took place during wet periods when abundant Ca++‐rich groundwater flowed along the structurally aligned valley system. With the onset of drier conditions, water table fluctuations led to the precipitation of nodular calcretes in the phreatic layer to a depth of about 20 m. A major geochemical change resulted in the preferential silicification of the nodular calcrete deposits. Conditions for silica mobilization may be related to drying‐induced salinity and in situ geochemical differentiation brought about by pebble dissociation towards the top of the sediment pile. As calcretization and valley formation progressed to lower levels, silica release took place on a diminishing scale. Thermoluminescence dating infers a mid‐Pleistocene age for sil‐calcrete formation suggesting that valley evolution and original calcrete precipitation are much older. Late stage dissolution of CaCO3 from pre‐existing surface calcretes or sil‐calcretes led to the formation of pedogenic case‐hardened deposits during a time of reduced flow through the Moshaweng system possibly during the upper or late Pleistocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
Calcrete‐coated remnants of landslide debris and alluvial deposits are exposed along the presently stable hillslopes of the Soreq drainage, Judea Hills, Israel. These remnants indicate that a transition from landslide‐dominated terrain to dissolution‐controlled hillslope erosion had occurred. This transition possibly occurred due to the significant decrease in tectonic uplift during the late Cenozoic. The study area is characterized by sub‐humid Mediterranean climate. The drainage hillslopes are typically mantled by thick calcrete crusts overlying Upper Cretaceous marine carbonate rocks. Using TT‐OSL dating of aeolian quartz grains incorporated in the calcrete which cements an ancient landslide deposit, we conclude that incision of ~100 m occurred from 1056 ± 262 to 688 ± 86 ka due to ~0·3° westward tilt of the region; such incision invoked high frequency of landslide activity in the drainage. The ages of a younger landslide remnant, alluvial terrace, and alluvial fan, all situated only a few meters above the present level of the active streambed, range between 688 ± 86 ka and 244 ± 25 ka and indicate that since 688 ± 86 the Soreq base level had stabilized and that landslide activity decreased significantly by the middle Pleistocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Natural soil pipes are common and significant in upland blanket peat catchments yet there are major problems in finding and defining the subsurface pipe networks. This is particularly important because pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yields. Traditional methods such as digging soil pits are destructive and time‐consuming (particularly in deep peat) and only provide single point sources of information. This paper presents results from an experiment to assess the use of ground‐penetrating radar (GPR) to remotely sense pipes in blanket peat. The technique is shown to be successful in identifying most of the pipes tested in the pilot catchment. Comparison of data on pipes identified by GPR and verified by manual measurement suggests that pipes can be located in the soil profile with a depth accuracy of 20 to 30 cm. GPR‐identified pipes were found throughout the soil profile; however, those within 10–20 cm of the surface could not be identified using the 100 or 200 MHz antennae due to multiple surface reflections. Generally pipes smaller than 10 cm in diameter could not be identified using the technique although modifications are suggested that will allow enhanced resolution. Future work would benefit from the development of dual‐frequency antennae that will allow the combination of high‐resolution data with the depth of penetration required in a wetland environment. The GPR experiment shows that pipe network densities were much greater than could be detected from surface observation alone. Thus, GPR provides a non‐destructive, fast technique which can produce continuous profiles of peat depth and indicate pipe locations across survey transects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A detailed study of the morphology and micro‐morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The ‘simple’ profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The ‘complex’ profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These ‘complex’ calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete‐forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete ‘inheritance’ may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete‐forming events. Thus, a detailed morphological/micro‐morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Effects of sediment load on hydraulics of overland flow on steep slopes   总被引:6,自引:0,他引:6  
Eroded sediment may have significant effects on the hydraulics of overland flow, but few studies have been performed to quantify these effects on steep slopes. This study investigated the potential effects of sediment load on Reynolds number, Froude number, flow depth, mean velocity, Darcy–Weisbach friction coefficient, shear stress, stream power, and unit stream power of overland flow in a sand‐glued hydraulic flume under a wide range of hydraulic conditions and sediment loads. Slope gradients were varied from 8·7 to 34·2%, unit flow rates from 0·66 to 5·26×10?3 m2 s?1, and sediment loads from 0 to 6·95 kg m?1 s?1. Both Reynolds number (Re) and Froude number (Fr) decreased as sediment load increased, implying a decrease in flow turbulence. This inverse relationship should be considered in modeling soil erosion processes. Flow depth increased as sediment load increased with a mean value of 1·227 mm, caused by an increase in volume of sediment‐laden flow (contribution 62·4%) and a decrease in mean flow velocity (contribution 37·6%). The mean flow velocity decreased by up to 0·071 m s?1 as sediment load increased. The Darcy–Weisbach friction coefficient (f) increased with sediment load, showing that the total energy consumption increased with sediment load. The effects of sediment load on f depended on flow discharge: as flow discharge increased, the influence of sediment load on f decreased due to increased flow depth and reduced relative roughness. Flow shear stress and stream power increased with sediment load, on average, by 80·5% and 60·2%, respectively; however, unit stream power decreased by an average of 11·1% as sediment load increased. Further studies are needed to extend and apply the insights obtained under these controlled conditions to real‐world overland flow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel‐ and cobble bed river in western Pennsylvania, USA (Allegheny River, Qmean = 190 m3/s) and a sand‐ and gravel‐bed river in Colorado, USA (South Platte River, Qmean = 9·7 m3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0·28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2·26 (upward) to ? 3·76 (downward) m/d. At the South Platte River site, substantial local‐scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0·24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2·37 to ? 3·40 m/d. Despite a stable bed, which commonly facilitates clogging by fine‐grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local‐ and meso‐scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage‐measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in‐stream piezometers may be misleading if used to determine seepage flux across the sediment‐water interface. Such a method assumes that flow between the well screen and sediment‐water interface is vertical, which appears to be a poor assumption in coarse‐grained hyporheic settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Glenn Wilson 《水文研究》2011,25(15):2354-2364
The role of soil pipeflow in ephemeral gully erosion is not well understood. Experiments were conducted on continuous soil pipes to better understand the role of internal erosion of soil pipes and its relation to ephemeral gully development. Soil beds of 140 cm length, 100 cm width and 20 cm depth had a single soil pipe of different initial sizes (2, 4, 6, 8, and 10 mm diameter) extend from a water reservoir to the outlet. Experiments were run on Providence silt loam and Smithdale loam soils under a constant head of 15 cm established for 30 min. Either the tunnel collapsed or the head could not be maintained. Soil pipes that were initially 2 and 4 mm clogged instantaneously at their mouth and did not exhibit flow, whereas, pipes initially ≥ 6 mm enlarged by 268, 397, and 699% on average for the 6, 8, and 10 mm diameters, respectively. Critical shear stress values were found to be essentially zero, and erodibility values gave erosion indexes that were extremely high. The rapid internal erosion resulted in erratic flow and sediment concentrations with periods of no flow as pipes were temporarily clogged followed by surges of high flow and high sediment concentrations. Tensiometers within 6 cm of the soil pipes did not exhibit pressure increases typically associated with pipe clogging. Flow through 10 mm diameter soil pipes exhibited tunnel collapse for both soils tested. Tunnel collapse typically occurred within minutes of flow establishment suggesting that ephemeral gullies could be misinterpreted as being caused by convergent surface flow if observations were made after the runoff event instead of when flow is first established through soil pipes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The hyporheic zone (HZ) has the capability to eliminate and attenuate nutrients and contaminants in riverine systems. Biogeochemical reactions and the potential elimination of contaminants are strongly controlled by the flow paths and dynamics in the HZ. Nevertheless, an easily applicable method for the field determination of flow patterns in the HZ is still lacking. Therefore, a heat pulse technique, which traces the movement of a short heat pulse in the upper part of the HZ and other sand beds, was developed. Five rods are vertically driven into the sediment of the streambed; one rod with a heater as point source located in about 10‐cm sediment depth and four rods with four temperature sensors in 3 cm distance, arranged concentrically with 7 cm diameter around the heating rod. Subsequently, a heat pulse is applied and the resulting breakthrough curves are indicative of flow velocities and flow directions in the streambed. A rough data analysis procedure is also suggested. In addition, laboratory experiments were performed to test the heat pulse technique. These experiments were validated based on coupled numerical modelling of flow and heat transport. First field tests of the method prove that the method is easily applicable under field conditions. These first field tests showed highly complex flow patterns with flow velocities from 1·8 to 4·9 cm min?1 and flow directions from parallel to surface flow to opposite to surface flow. This suggests the need for a robust method to quantify hyporheic flow patterns in situ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Channel curvature produces secondary currents and a transverse sloping channel bed, along which the depth increases towards the outer bank. As a result deep pools tend to form adjacent to the outer bank, promoting bank collapse. The interaction of sediment grains with the primary and secondary flow and the transverse sloping bed also causes meanders to move different grain sizes in different proportions and directions, resulting in a consistent sorting pattern. Several models have been developed to describe this process, but they all have the potential to over‐predict pool depth because they cannot account for the influence of erodible banks. In reality, bank collapse might lead to the development of a wider, shallower cross‐section and any resulting flow depth discrepancy can bias associated predictions of flow, sediment transport, and grain‐size sorting. While bed topography, sediment transport and grain sorting in bends will partly be controlled by the sedimentary characteristics of the bank materials, the magnitude of this effect has not previously been explored. This paper reports the development of a model of flow, sediment transport, grain‐size sorting, and bed topography for river bends with erodible banks. The model is tested via intercomparison of predicted and observed bed topography in one low‐energy (5·3 W m?2 specific stream power) and one high‐energy (43·4 W m?2) study reach, namely the River South Esk in Scotland and Goodwin Creek in Mississippi, respectively. Model predictions of bed topography are found to be satisfactory, at least close to the apices of bends. Finally, the model is used in sensitivity analyses that provide insight into the influence of bank erodibility on equilibrium meander morphology and associated patterns of grain‐size sorting. The sensitivity of meander response to bank cohesion is found to increase as a function of the available stream power within the two study bends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Water flow in the soil–root–stem system was studied in a flooded riparian hardwood forest in the upper Rhine floodplain. The study was undertaken to identify the vertical distribution of water uptake by trees in a system where the groundwater is at a depth of less than 1 m. The three dominant ligneous species (Quercus robur, Fraxinus excelsior and Populus alba) were investigated for root structure (vertical extension of root systems), leaf and soil water potential (Ψm), isotopic signal (18O) of soil water and xylem sap. The root density of oak and poplar was maximal at a depth of 20 to 60 cm, whereas the roots of the ash explored the surface horizon between 0 and 30 cm, which suggests a complementary tree root distribution in the hardwood forest. The flow density of oak and poplar was much lower than that of the ash. However, in the three cases the depth of soil explored by the roots reached 1·2 m, i.e. just above a bed of gravel. The oak roots had a large lateral distribution up to a distance of 15 m from the trunk. The water potential of the soil measured at 1 m from the trunk showed a zone of strong water potential between 20 and 60 cm deep. The vertical profile of soil water content varied from 0·40 to 0·50 cm3 cm?3 close to the water table, and 0·20 to 0·30 cm3 cm?3 in the rooting zone. The isotopic signal of stem water was constant over the whole 24‐h cycle, which suggested that the uptake of water by trees occurred at a relatively constant depth. By comparing the isotopic composition of water between soil and plant, it was concluded that the water uptake occurred at a depth of 20 to 60 cm, which was in good agreement with the root and soil water potential distributions. The riparian forest therefore did not take water directly from the water table but from the unsaturated zone through the effect of capillarity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An experimental programme was conducted in which eight full‐scale unreinforced masonry walls were subjected to cyclic face loading using a system of airbags. Of the eight walls, six contained a window opening and four were subjected to vertical pre‐compression. Combined supports at the vertical and horizontal edges ensured that under face loading the walls underwent two‐way bending. The test walls were found to possess good post‐peak strength and displacement capacity as well as reasonable energy dissipation characteristics. Significant strength and stiffness degradation and non‐symmetry of strength in the positive and negative displacement directions were also evident. Discussion of the causes of the aforementioned trends and their implications towards the seismic response of masonry walls is provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
重力场向下延拓Milne法   总被引:1,自引:1,他引:0       下载免费PDF全文
张冲  黄大年  刘杰 《地球物理学报》2017,60(11):4212-4220
重力场向下延拓能够突出局部和浅部的异常信息,分离叠加的异常特征.但是向下延拓通常具有过程不稳定、下延深度小、结果不准确等问题.针对向下延拓所存在的不足,本文利用重力场及其垂向一阶导数,基于辛普森(Simpson)求积公式,推导出重力场向下延拓米尔尼(Milne)公式.将本文向下延拓方法应用于模型数据,向下延拓模型结果及误差曲线表明,相对于向下延拓快速傅里叶变换(FFT)法和积分迭代法,向下延拓Milne法的深度更大,相对误差更小;相对模型值,向下延拓Milne法能够获得稳定且准确的结果.对加拿大乃查科(Nechako)盆地地区实测航空重力数据进行本文方法向下延拓验证,处理结果表明,相对于实测异常,本文方法向下延拓结果能够很好还原实测数据,并且在进一步向下延拓中反映原始异常的趋势,增强局部和细小异常信息.  相似文献   

17.
火山岩油气藏重磁电震综合预测方法及应用   总被引:5,自引:1,他引:4       下载免费PDF全文
通过准噶尔盆地陆东地区数十口钻井资料的对比分析、归纳总结,提出了火山岩油气藏重磁电震综合预测方法.将正则化下延与延拓回返垂直二次导数串联形成了一个新的滤波器,该滤波器相当于首先通过正则化下延将位场曲面延拓至地下目的层段,降低火山岩埋深对磁J异常幅值的影响,然后利用延拓回返垂直二次导数对弱信号进行增强,不仅提高了位场异常...  相似文献   

18.
Preferential flow pathways, such as soil pipes, are usually present in the soil of slopes. Subsurface flow through the soil pipes affects the subsurface drainage system and is responsible for sediment removal from slopes. However, a record of the inner structure of soil pipes has rarely been reported for slopes. A fibrescope examination of the morphology and flow phases in soil pipes in hillslopes underlain by a Quaternary sand–gravel formation provided the following information: the main pores of the soil pipes ran mostly parallel with the slope gradient; the cross‐sections of the soil pipes were approximately circular; and occurred on a few occasions; with some triple junctions being present. In addition, both full flow and partly full‐depth conditions occurred simultaneously in the soil pipe. The full flow condition has long been used in hydrological studies to model the pipe flow mechanism. Both the full flow condition and the partly full‐depth condition, however, must be examined closely in order to evaluate the subsurface hydrology in heterogeneous soil and the hydrogeomorphological processes of subsurface hydraulic erosion. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Channels on the north‐facing piedmont of the Sierra Madre range in Cuyama Valley, California have alternated between three process regimes during the late Quaternary: (1) vertical incision into piedmont alluvium and older sedimentary deposits; (2) lateral erosion; and (3) sediment accumulation. The state of the piedmont system at a given time has been controlled by upstream sediment flux, regional tectonic uplift and incision of the axial Cuyama River. To better understand the timing and to attempt to interpret causes of past geomorphological processes on the Sierra Madre piedmont, we mapped the surficial geology and dated alluvial deposits using radiocarbon, cosmogenic and optical dating methods. Four primary episodes of sedimentation have occurred since ca. 100 ka, culminating in the most recent period of extensive piedmont sedimentation between 30 and 20 ka. Fill terraces in Cuyama Valley formed by piedmont sediment accumulation followed by vertical incision and lateral erosion are fairly planar and often mantle strath bedrock surfaces. Their vertical spatial arrangement is a record of progressive regional tectonic uplift and concomitant axial Cuyama River channel incision migrating up tributary piedmont channels. Subparallel longitudinal terrace profiles which have a linear age–elevation relationship indicate that multiple episodes of climatically controlled sedimentation overprints ~1 m kyr?1 of regional uplift affecting the Cuyama River and its tributaries. Sedimentation was probably a result of increased precipitation that caused saturation landsliding in steep catchments. It is possible that increased precipitation during the Last Glacial Maximum was caused by both continental‐scale circulation pattern reorganization and increased Pacific storm frequency and intensity caused by ‘early warming’ of nearby Pacific Ocean surface waters. Older episodes of piedmont sedimentation are difficult to correlate with specific climate regimes, but may correlate with previous periods of increased precipitation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号