首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma.

The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and 2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher.

The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial Nd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a Nd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination.  相似文献   


2.
The intrusive complex at Hortavær represents a magma transfer zone in which multiple pulses of gabbroic and dioritic magmas evolved along Fe- and alkali-enrichment trends. Extreme alkali enrichment resulted in nepheline-normative and sparse nepheline-bearing monzodioritic and monzonitic rocks. More evolved monzonitic and syenitic rocks are silica saturated and, in some cases, quartz bearing. Previous and current research recognized an abundance of clinopyroxene and other Ca-rich phases, such as scapolite, grossular-rich garnet, and igneous-textured calcite among the mafic and intermediate rocks. Even the most pyroxene-rich samples contain low Sc concentrations, which suggests early, intense fractionation of clinopyroxene. These features and the alkali enrichment are consistent with assimilation of carbonate-rich host rocks. Carbon isotope ratios of the igneous-textured calcite indicate an origin of the carbon from host rocks rich in calcite, consistent with assimilation. However, low Nd values (−3.4 to −10.2) and moderate initial 87Sr/86Sr values (0.7052 to 0.7099) indicate the need for assimilation of quartzofeldspathic rocks as well. Models of combined assimilation and fractional crystallization indicate that assimilation of simple end members, either carbonate or silicate, cannot explain the entire data set. Instead, variable proportions of carbonate and silicate materials were assimilated, with the most pronounced assimilation effects in the mafic rocks. The reasons for variable degrees of assimilation are, as yet, uncertain. It is possible that assimilation of calc-silicate rocks with variable carbonate/silicate proportions resulted in the range of observed compositions. However, the importance of carbonate assimilation in mafic rocks compared to felsic ones suggests that assimilation of carbonates was predominant at high temperature and/or mafic magma compositions and assimilation of silicates was predominant at lower temperature and/or felsic magma compositions. We suggest that the ability of the mafic magma to dissolve higher proportions of carbonate contaminants is the result of the magma's ability to form clinopyroxene as a product of assimilation. In any case, extensive carbonate assimilation was possible because CO2 escaped from the system.  相似文献   

3.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

4.
Six volcanic rocks, reconnaissance samples representing most of the temporal and compositional variation in the Pinacate volcanic field of Sonora and Arizona, are characterized for major element and Nd---Sr isotopic compositions. The samples consist of basanite through trachyte of an early shield volcano, and alkali basalts and a tholeiite from later craters and cinder cones. With the exception of the trachyte sample, which has increased 87Sr/86Sr due to crustal effects, all 87Sr/86Sr values fall between 0.70312 and 0.70342, while εNd values are all between + 5.0 and + 5.7. Clinopyroxene in a rare spinel-lherzolite nodule derived from the uppermost mantle beneath the field has 87Sr/86Sr of 0.70320 but εNd of + 8.8, three εNd units higher than the volcanic rocks. Both the volcanic rocks and the nodule record the presence of asthenospheric, rather than enriched lithospheric mantle beneath Pinacate. This is consistent with one or both of (a) proximity of Pinacate to the Gulf of California spreading center and (b) presence of similar asthenospheric mantle signatures in volcanic rocks over a wide contiguous area of the southwestern USA. We consider the comparison to other southwestern USA magma sources as the more relevant alternative, although a definite conclusion is not possible at this stage.  相似文献   

5.
In situ zircon U–Pb ages and Hf isotopic compositions and whole rock geochemical and Sr–Nd–Pb isotopic data are presented for the Zijinshan alkaline intrusive complex from the Shanxi Province, western North China Craton. Salic rocks dominate the complex with the monzonite occurring in the outermost and pseudoleucite phonolitic breccia in the center. The intrusion took place 127 Ma ago with the earliest emplacement of monzonite and the termination of cryptoexplosive pseudoleucite phonolitic breccia. All rocks from this complex show LREE enrichment and HFSE depletion and exhibit enriched to depleted Sr–Nd isotopic features. The presence of inherited zircons and enriched Hf isotopic compositions in zircon rims, along with the enriched whole rock Sr–Nd isotopic compositions, indicate that the monzonite was formed through the mixing of lithospheric mantle-derived magma with lower crust-derived melts. The diopside syenite and nepheline-bearing diopside syenite are more depleted than the monzonite in terms of the Sr and Nd isotopes, together with their very high concentrations of LILE, we proposed that they originated from a mixed mantle source of enriched lithospheric mantle and depleted asthenosphere. The nepheline syenite has very low concentrations of MgO, Ni, Cr, suggesting that the magma underwent significant crystal fractionation. The most depleted Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7036–0.7042, εNd(t) = − 0.2–0.3) among all rock types indicate a great contribution of asthenosphere to the nepheline syenite. The Zijinshan complex and its related crust-mantle interaction occurred in an extensional environment which resulted in continuously asthenospheric upwelling. Such an extensional environment might have been developed during the post-orogenic stage of the Late Paleozoic amalgamation of North China Craton with Mongolian continents and subsequent Mongol–Okhotsk ocean closure.  相似文献   

6.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

7.
At present, 48 Late Cretaceous (ca. 70–88 Ma) kimberlitic pipes have been discovered in three separate areas of the northern Alberta: the Mountain Lake cluster, the Buffalo Head Hills field and the Birch Mountains field. The regions can be distinguished from one another by their non-archetypal kimberlite signature (Mountain Lake) or, in the case of kimberlite fields, primitive (Buffalo Head Hills) to evolved (Birch Mountains) magmatic signatures.

The dominant process of magmatic differentiation is crystal fractionation and accumulation of olivine, which acts as the main criteria to distinguish between primitive and evolved Group I-type kimberlite fields in the northern Alberta. This is important from the viewpoint of diamond exploration because the majority (about 80%) of the more primitive Buffalo Head Hills kimberlites are diamondiferous, whereas the more evolved Birch Mountains pipes are barren of diamonds for the most part. Petrographically, the Buffalo Head Hills samples are distinct from the Birch Mountains samples in that they contain less carbonate, have a smaller modal abundance of late-stage minerals such as phlogopite and ilmenite, and have a higher amount of fresh, coarse macrocrystal (>0.5 mm) olivine. Consequently, samples from the Buffalo Head Hills have the highest values of MgO, Cr and Ni, and have chemistries similar to those of primitive hypabyssal kimberlite in the Northwest Territories. Based on whole-rock isotopic data, the Buffalo Head Hills K6 kimberlite has 87Sr/86Sr and Nd values similar to those of South African Group I kimberlites, whereas the Birch Mountains Legend and Phoenix kimberlites have similar Nd values (between 0 and +1.9), but distinctly higher 87Sr/86Sr values (0.7051–0.7063).

The lack of whole-rock geochemical overlap between kimberlite and the freshest, least contaminated Mountain Lake South pipe rocks reflects significant mineralogical differences and Mountain Lake is similar geochemically to olivine alkali basalt and/or basanite. Intra-field geochemical variations are also evident. The K4 pipe (Buffalo Head Hills), and Xena and Kendu pipes (Birch Mountains) are characterized by anomalous concentrations of incompatible elements relative to other northern Alberta kimberlite pipes, including chondrite-normalized rare-earth element distribution patterns that are less fractionated than the other kimberlite samples from the Buffalo Head Hills and Birch Mountains. The Xena pipe has similar major element chemical signatures and high-Al clinopyroxene similar to, or trending towards, the Mountain Lake pipes. In addition, K4 and Kendu have higher 87Sr/86Sr and lower Nd than Bulk Earth and plot in the bottom right quadrant of the Nd–Sr diagram. We suggest, therefore, that the K4 and Kendu pipes contain a contribution from old, LREE-enriched (low Sm/Nd) lithosphere that is absent from the other kimberlites, are affected by crustal contamination, or both.

Based on xenocryst populations, the northern Alberta kimberlite province mantle is dominated by carbonate-saturated lherzolitic mantle. Higher levels of melt depletion characterize the Buffalo Head Hills mantle sample. Despite high diamondiferous to barren pipe ratios in the Buffalo Head Hills pipes, mineral indicators of high diamond potential, such as G10 garnet, diamond inclusion composition chrome spinels and high-sodium eclogitic garnet, are rare.  相似文献   


8.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

9.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

10.
The Ditrău Alkaline Massif is an intrusion into the Bucovina nappe system that is part of the Mesozoic crystalline zone located in Transylvania, Romania, in the Eastern Carpathians. Nepheline syenites are the most abundant rocks in the central and eastern part of the Massif, and represent the last major intrusion of the complex. Fluid inclusions in nepheline, aegirine and albite were trapped at magmatic conditions on or below the H2O-saturated nepheline syenite solidus at about 400–600 °C and 2.5–5 kbars. Early nepheline, and to a lesser extent albite, were altered by highly saline fluids to produce cancrinite, sodalite and analcime, during this process cancrinite also trapped fluid inclusions. The fluids, in most cases, can be modeled by the H2O–NaCl system with varying salinity; however inclusions with more complex fluid composition (containing K, Ca, CO3, etc., in addition to NaCl) are common. Raman spectroscopic analyses of daughter minerals confirm the presence of alkali-carbonate fluids in some of the earliest inclusions in nepheline, aegirine and albite.

During crystallization, the melts exsolved a high salinity, carbonate-rich magmatic fluid that evolved to lower salinity as crystallization progressed. Phases that occur early in the paragenesis contain high-salinity inclusions while late phases contain low-salinity inclusions. The salinity trend is consistent with experimental data for the partitioning of chlorine between silicic melt and exsolved aqueous fluid at about 2.0 kbars. The activity of water (aH2O) in the melt increases during crystallization, resulting in the formation of hydrous phases during late-stage crystallization of the nepheline syenites.  相似文献   


11.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

12.
Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite±biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb–Sr isochrons of BIS granite yield an age of 1116±41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095±9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of Nd are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 to +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by PTfH2O. Lake Hopatcong magma crystallized at a liquidus temperature that approached 900°C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial PT conditions of the Byram magma were ≥850°C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma.  相似文献   

13.
The oxygen and strontium isotope compositions of granitic rocks of the Idaho Batholith provide insight into the magma source, assimilation processes, and nature of the suture zone between the Precambrian craton and accreted arc terranes. Granitic rocks of the Idaho Batholith intrude basement rocks of different age: Triassic/Jurassic accreted terranes to the west of the Salmon River suture zone and the Precambrian craton to the east. The age difference in the host rocks is reflected in the abrupt increase in the initial 87Sr/86Sr ratios of granitic rocks in the batholith across the previously defined 0.706 line. Initial 87Sr/86Sr ratios of granitic rocks along Slate Creek on the western edge of the batholith jump from less than 0.704 to greater than 0.707 along an approximately 700 m transect normal to the Salmon River suture. Initial 87Sr/86Sr ratios along the Slate Creek transect do not identify a transition zone between accreted arcs and the craton and suggest a unique tectonic history during or after suturing that is not documented along other transects on the west side of the Idaho Batholith. The lack of transition zone along Slate Creek may be a primary structure due to transcurrent/transpressional movement rather than by contractional thrust faulting during suturing or be the result of post-imbrication modification.  相似文献   

14.
P. Barbey  H. Nachit  J. Pons 《Lithos》2001,58(3-4):125-143
The Tarçouate pluton (Anti-Atlas, Morocco) is an inversely zoned laccolith emplaced 583 Ma ago into low-grade metasediments, with the following succession: leucocratic granites, biotite–granodiorites (±monzodiorites), hornblende–granodiorites (±monzodiorites) and monzodiorites syn-plutonic dykes. These rocks form two distinct, chemically coherent, units:

(1) A main unit consists of layered (572<59 wt.%) and homogeneous (632<67%) hornblende–granodiorites, biotite–granodiorites (672<72%) and aplites (702<76%). All these rocks are metaluminous to peraluminous and display fractionated HREE depleted patterns (La/YbN=14–61; YbN=0.7–6.8). Initial 87Sr/86Sr ratios (0.7072 to 0.7080) increase, whereas Nd(t) values (−1.7 to −2.8) decrease from the hornblende– to the biotite–granodiorites. Monzodiorites occur as mafic microgranular enclaves or syn-plutonic dykes.

(2) A subordinate unit consists of leucocratic, distinctly peraluminous, muscovite-bearing granites (722<75%) occurring at the northern edge of the pluton and as dykes in the surrounding schists towards the top of the pluton. These rocks are free of monzodioritic enclaves. They display less fractionated patterns with higher HREE contents (La/YbN=2–19; YbN=11–18), a distinct Nd(t) value (−11.8) and a 87Sr/86Sr initial ratio (0.7480) within those of the surrounding schists (0.7393–0.7819).

Magma–host interactions are closely related to differentiation and occurred at different levels, but mainly before emplacement. Field relationships and petrogenetic modelling show that the bt–granodiorites formed at levels deeper than the level of emplacement, by fractional crystallisation (0.65

These data preclude any significant material transfer process for the emplacement of the Tarçouate pluton, but rather suggest assembly of successive pulses of variably differentiated crystal-poor magmas. These shallow level granitic plutons can be considered as an end-member of magma emplacement with minimum interactions with the country rocks.  相似文献   


15.
Tanya Furman  David Graham 《Lithos》1999,48(1-4):237-262
This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably <1 km. The chemical and isotopic variations are mostly geographically controlled: lavas from Tshibinda volcano, which lies on a rift border fault on the northwestern margin of the province, have higher values of 87Sr/86Sr, (La/Sm)n, Ba/Nb, and Zr/Hf than the majority of Kivu (Bukavu) samples. The range of 87Sr/86Sr at Tshibinda (0.70511–0.70514) overlaps some compositions found in the neighboring Virunga province, while Bukavu group lavas include the lowest 87Sr/86Sr (0.70314) and highest Nd (+7.6) yet measured in western rift lavas. The Tshibinda compositions trend towards a convergence for Sr–Nd–Pb isotopic values among western rift lavas. Among Kivu lavas, variations in 143Nd/144Nd correlate with those for certain incompatible trace element ratios (e.g., Th/Nb, Zr/Hf, La/Nb, Ba/Rb), with Tshibinda samples defining one compositional extreme. There are covariations of isotopic and trace element ratios in mafic lavas of the East African Rift system that vary systematically with geographic location. The lavas represent a magmatic sampling of variations in the underlying continental lithospheric mantle, and it appears that a common lithospheric mantle (CLM) source is present beneath much of the East African Rift system. This source contains minor amphibole and phlogopite, probably due to widespread metasomatic events between 500 and 1000 Ma. Lava suites which do not show a strong component of the CLM source, and for which the chemical constraints also suggest the shallowest magma formation depths, are the Bukavu group lavas from Kivu and basanites from Huri Hills, Kenya. The inferred extent of lithospheric erosion therefore appears to be significant only beneath these two areas, which is generally consistent with lithospheric thickness variations estimated from gravity and seismic studies.  相似文献   

16.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

17.
Volumetrically minor microsyenites, alkali microgranite and related trachytic dykes intrude early Pliocene OIB-like alkali basaltic and basanitic flows of the Meseta del Lago Buenos Aires in Central Patagonia (47°S–71°30′W), and occur together with scarce trachytic lava flows. Whole-rock K–Ar ages between 3.98 and 3.08 Ma indicate that the emplacement of these felsic rocks occurred more or less synchronously with that of the post-plateau basaltic sequence that they intrude, during a bimodal mafic–felsic magmatic episode devoid of intermediate compositions. Chemically, these rocks have A1-type granitoid affinities and are characterized by high silica and alkali contents (60–68 wt.% SiO2; 8.7–10.8 wt.% Na2O + K2O), major and trace elements patterns evidencing evolution by low-pressure fractional crystallization, and Sr and Nd isotopic signatures similar to those of coeval basalts ((87Sr/86Sr)o = 0.70488–0.70571; (143Nd/144Nd)o = 0.512603–0.512645). Nevertheless, some of them have the most radiogenic Sr values ever reported for a magmatic rock in the Meseta and even in the whole Neogene Patagonian Plateau Lavas province ((87Sr/86Sr)o = 0.70556–0.70571; (143Nd/144Nd)o = 0.512603–0.512608). In addition, very high contents of strongly incompatible elements in the most evolved rocks, together with Sr isotopic ratios higher than those of coeval basalts, suggest the occurrence of open-system magmatic processes. Continuous fractional crystallization from a primitive basaltic source, similar to post-plateau coeval basalts, towards alkali granites combined with small rates of assimilation of host Jurassic tuffs (AFC) in a shallow magmatic reservoir, best explains the geochemical and petrographic features of the felsic rocks. Therefore, A1-type magmatic rocks can be generated by open-system crystallization of deep asthenospheric melts in back-arc tectonic settings.

In Central Patagonia, these  3–4 Ma old alkaline intrusions occur aligned along a  N160–170 trending lineament, the Zeballos Fault Zone, stacking the morphotectonic front of one segment of the Patagonian Cordillera. Intrusion along this fault zone occurred during the onset of a new transtensional or extensional event in the area, related to major regional tectonics occurring in possible relation with the collision of one segment of the Chile Spreading Ridge with the trench.  相似文献   


18.
C.J. Adams  R.J. Beck  H.J. Campbell   《Lithos》2007,97(3-4):307-322
Nephrite jade occurs in three terranes (Dun Mountain–Maitai, Caples and Torlesse) in New Zealand, where it is associated with ultramafic and ophiolitic rocks in narrow metasomatic reaction zones at the margins of serpentinite (having harzburgite/gabbro/dolerite precursors) with silicic metasediments and metavolcanics. True nephrite fabrics are developed only locally where marginal shearing is intense, and late in the metamorphic history. 87Sr/86Sr values of these nephrites do not display the primitive values of their gabbro/dolerite precursor component i.e. 0.7030–0.7035, as expected if formed during serpentinisation. Rather, the nephrites have more evolved 87Sr/86Sr values inherited from the metasediment component at a later stage, and which fall within particular terrane groups: Dun Mountain–Maitai 0.7045–0.7060, Caples 0.7058–0.7075 and Torlesse 0.7085–0.7110. Rb–Sr ages and initial 87Sr/86Sr ratios of the metasediment component from in situ nephrite localities, when compared with their counterparts throughout the host terrane, show that nephrite Sr isotopic compositions are characteristic of the host terrane.  相似文献   

19.
Andreas Stracke  Ernst Hegner 《Lithos》1998,45(1-4):545-560
The Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain occurs in a zone of lithospheric extension superimposed on a post-collisonal tectonic setting along the Pacific and Indo-Australian plates northeast of Papua New Guinea. We present geochemical and Sr, Nd, and Pb isotope data for volcanic rocks from these islands and three recently discovered seamounts located at Lihir island. Major element data document an alkalic affinity of the sample suite and trachybasalts as the predominant rock type. Negative Nb-anomalies in extended trace element patterns, enrichment of the light rare earth elements, and Ce/Pb ratios of about 4 are typical of the values in calc alkaline island arc volcanics and support an origin from subduction-modified mantle. 87Sr/86Sr ratios of 0.7037 to 0.7044 and Nd values of +5.6 to +6.8 indicate that the upper mantle evolved with a time-integrated depletion in LREE, however, not as severe as that recorded in basalts from the East Pacific Rise. Variable 87Sr/86Sr ratios at less variable 143Nd/144Nd ratios suggest that 87Sr/86Sr ratios of the melts were modified by secondary processes, such as assimilation of seawater Sr from crustal rocks. The Pb isotope ratios are uniform, moderately radiogenic (206Pb/204Pb ca. 18.7 to 18.8), and similar to those reported for the active Mariana arc. Elevated 207Pb/204Pb ratios relative to Pacific MORB suggest melting of small amounts of subducted sediments (ca. 1–2 wt.%). An important control of subducted sediment on the chemistry of the melts can also be inferred from the ratios of highly incompatible trace elements (e.g., Th, U, Pb, La, and Nb). Additional mantle enrichment by subduction derived fluids is reflected in high values of highly incompatible trace element ratios between fluid mobile (e.g., Ba) and fluid immobile elements (e.g., Th, Nb). The results of this study document that the chemical composition of igneous rocks from post-collisional tectonic settings are strongly influenced by previous plate tectonics. This conclusion implies that the information conveyed by tectonic discrimination diagrams for these rocks must be interpreted with care.  相似文献   

20.
Whole-rock Nd and Sr isotopic compositions of the mafic-ultramafic complex near Finero demonstrate that the magma was derived from a depleted, perhaps MORB-type mantle reservoir. The Sm-Nd data for the Amphibole Peridotite unit can be interpreted as an isochron with an apparent age of 533 ± 20 Ma, which is consistent with a 207Pb/206Pb evaporation age of 549 ± 12 Ma of a single zircon grain from the Internal Gabbro unit. However, the interpretation of these apparent ages remains open to question. We therefore retain the alternative hypotheses that the intrusion occurred either about 533 or 270 Ma ago, the latter being the most likely age of emplacement of the much larger magma body near Balmuccia (Val Sesia). The implication of the older emplacement age (if correct) would be that the igneous complex may be related to the numerous amphibolite units, which are intercalated with the metapelites of the overlying Kinzigite Formation, and together with them may constitute an accretionary complex. In this case, the mafic-ultramafic complex itself might also be part of such an accretionary complex (as has been proposed for the Balmuccia peridotite).

Internal Sm-Nd isochrons involving grt, cpx, plag and amph from the Internal Gabbro unit yield concordant ages of 231 ± 23, 226 ± 7, 223 ± 10, 214 ± 17, and 203 ± 13 Ma. These results confirm published evidence for a separate, regional heating event about 215 ± 15 Ma ago.

Initial Nd(533) values average +6.3 ± 0.4 for six samples of the Amphibole Peridotite unit and +6.0 ± 1.2 for ten samples of the External Gabbro unit. 87Sr/86Sr ratios require little or no age correction and range from 0.7026 to 0.7047 (with two outliers at 0.7053 and 0.7071). Strong correlations between 87Sr/86Sr and K2O and weaker correlations between initial Nd and K2O imply a comparatively minor (≤ 10%) contamination of the External Gabbro magma by crustal material and a later alteration by a crustal or seawater-derived fluid. These results contrast sharply with the isotopic composition (negative Nd and high 87Sr/86Sr values) of the associated mantle rocks, the Phlogopite Peridotite unit, which has been pervasively metasomatized by crustal fluids. This type of metasomatism and its isotopic signature are never seen in the magmatic complex. This evidence rules out any direct genetic relationship between the igneous complex and the mantle peridotite. The crust-mantle interaction is the opposite of that seen at Balmuccia, where the mantle peridotite is essentially ‘pristine’ and the magmatic body has been extensively contaminated by assimilation of crustal rocks.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号