首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
1997年3月9日漠河日全食期间地磁脉动的主要特征   总被引:1,自引:0,他引:1  
1997年3月9日漠河日全食期间分别在漠河地磁台,北京怀柔地磁脉动站和三亚地磁台开展了地磁脉动的观测。本文重点分析了3月9日07:00LT至11:00LT日全食前后漠河地区地磁脉动的观测资料,研究了日全食期间地磁脉动的主要特征,并对日全食期间地磁脉动的激发机制做了较深入的人。  相似文献   

2.
云南省孟连西7.3级地震前跨断层形变反映   总被引:2,自引:0,他引:2       下载免费PDF全文
云南省孟连西7.3级地震前跨断层形变反映张兴华,宋金玲(云南省地震工程研究所,昆明650204)1995年7月10日、12日在滇西南孟连以西(北纬22.1°东经99.3°)连续发生Ms6.2级和7.3级强烈地震.1993年1月─1995年5月,云南中...  相似文献   

3.
本文分析了1988年12月和1989年1月在长春、北京、兰州3个台站上观测的地磁脉动资料,研究了3个台站同时记录到的Pi2地磁脉动的频谱特征和偏振特性,进而对低纬Pi2地磁脉动的产生和传播机制做了理论研究.  相似文献   

4.
中低纬地区地磁脉动的研究   总被引:1,自引:0,他引:1  
近年来我们对中低纬地区地磁脉动进行了大量的观测和研究。本文不仅介绍了观测仪器的设计、台网设置及数据处理方法。而且还简要地介绍了一些主要科研成果,如低纬Pc3脉动特点,低纬Pi2脉动偏振特性。南极地区的地磁脉动观测结果,以及在磁暴和太阳耀斑期间在低纬地区观测的地磁脉动。这对于进一步认识中低纬地区地磁脉动是十分有益的。  相似文献   

5.
地震期间的地磁脉动效应   总被引:2,自引:1,他引:1  
1996年11月17日至11月29日在新疆喀仁地区8次地震期间观测到的震前发生的高频地磁脉动现象,文中对每次地震前的Pcl-2脉动的形态,以及脉动的起动时刻,持续时间,H分量和D分量的平均振幅随北京地方时的分布进行了详细研究分析,对这种震前观测到的高频地磁脉动的激发机制也做了深入的讨论,事实表明,这种震前发生的高频地磁脉动的地震的短期预报上可能有广泛的应用前景。  相似文献   

6.
张北地震前地磁空间相关异常特征   总被引:2,自引:1,他引:1  
应用地磁空间相关方法对华北地区1996年1月至1998年1月地磁核旋定点(北京时21h)观测数据的分析研究表明,1998年1月10日张北MS6.2地震和1996年5月3日内蒙古包头MS6.4地震前存在地磁空间相关低值异常。  相似文献   

7.
武汉地区中尺度电离层声重波扰动的变化特性   总被引:2,自引:1,他引:2       下载免费PDF全文
利用武汉电离层观象台高频多普勒台阵的覆盖太阳活动高、低年份,长达5年的连续观测数据,采用小波分析等方法估算电离层声重波扰动(TID)的传播参量,通过这些参量对武汉地区电离层扰动形态和变化规律进行了系统分析研究.结果表明,观测到的中尺度电离层声重波扰动(MSTID)存在二个显著季变化,在传播速度和周期上有明显差异的优势传播方向:一个指向东北方,传播的方位角主要分布在30°─70°之间(0°为正北,以顺时针方向表示传播方位角),它在夏季出现率最大,冬季基本消失;另一个优势方向指向正南,方位角主要分布在150°─220°范围,主要出现在冬季.文中还给出了MSTID的年、日变化,并进一步探讨了其变化特性的可能形成机理.  相似文献   

8.
2007年3月3日位于磁层昏侧THEMIS的5颗卫星、同步轨道晨侧和午前的GOES 3颗卫星和地面地磁台站同时观测到了持续近4 h的Pc5 ULF波.我们用交叉小波相关分析计算脉动的传播速度,用MVA分析求解脉动的传播方向,然后结合两者的计算结果获得了Pc5相速度矢量信息.THEMIS卫星观测到Pc5具有压缩特性,且向阳传播,速度约在6~20 km/s左右,相比于磁层中阿尔芬速度(1000 km/s)较低.这些Pc5 ULF波动可能产生于磁尾或磁层内部不稳定性.GOES 3颗卫星观测到不同情况的Pc5 ULF波,极向模占主要成分,且具有波包结构,具有阿尔芬驻波特性,可能产生于K-H(Kelvin-Helmholtz)不稳定性.地面台站观测到ULF波扰动幅度随纬度升高而增强,Pc5脉动在地理纬度60°附近达到最大值, Dumont durville台站观测到的脉动与THEMIS观测到波形有很好的相似性.  相似文献   

9.
本文利用北京白家疃地磁台1977年4月至1978年3月的地磁脉动记录,使用最大熵值法(MEM),对主要发生在夜间、短序列的Pi2型无规脉动进行了功率谱分析,同时使用复解调法分析了偏振特性。最后,根据磁层的磁流体振荡理论对Pi2型脉动的产生机制进行了初步讨论。  相似文献   

10.
新疆喀什地区地震前地磁脉动异常分析   总被引:16,自引:2,他引:14       下载免费PDF全文
1996年11月17日至29日在新疆喀什地区发生8次地震,震前均观测到地磁脉动异常.文中对未发生地震期间地磁脉动观测的背景环境以及喀什台常见的地磁脉动进行分析,然后对地震前地磁脉动异常现象进行研究,并初步探讨这种震前地磁脉动异常的产生机制.这种震前发生的地磁脉动异常在地震的短期预报上可能有广泛的应用前景.  相似文献   

11.
本文对1986年1月北京地区Pc3地磁脉动进行了偏振特征的分析,分别找出了北京地区Pc3地磁脉动在磁静日期间和磁扰日期间偏振旋转方向随地方时变化的规律,以及偏振主轴方向随地方时变化的规律。 根据Pc3地磁脉动的偏振分析,可以了解北京地区Pc3脉动的激发机制,为进一步磁层诊断提供科学依据。  相似文献   

12.
Geomagnetism and Aeronomy - The article considers the scenario of the propagation of geomagnetic pulsations Pc1 from the region of their generation in the magnetosphere to a ground-based receiver,...  相似文献   

13.
Simultaneous whistler records of one station and geomagnetic pulsation (Pc3) records at three stations were compared. In a previous study correlation was found between occurrence and L value of propagation/excitation for the two phenomena. The recently investigated simultaneous records have shown that the correlation is better on longer time scales (days) than on shorter ones (minutes), but the L values of the propagation of whistlers/excitation of pulsations are correlated, i.e. if whistlers propagate in higher latitude ducts, pulsations have periods longer than in the case when whistlers propagate in lower latitude ducts.  相似文献   

14.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

15.
Summary The dependence of the individual parameters of geomagnetic Pc3 pulsations, of their frequencies, amplitudes, phases, flattening of their polarization ellipses, the orientation of their major axis and the sense of rotation of the disturbance vector, are determined from the records made at the Budkov and Niemegk Observatories. Also their diurnal variations at both stations and the correlation of the numerical values between both stations are given.  相似文献   

16.
Pc3 geomagnetic field fluctuations detected at low latitude (L’Aquila, Italy) during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica) provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.  相似文献   

17.
The dynamics of the Pc5 and Pi1 pulsation characteristics and relativistic electron fluxes at geostationary orbit were comparatively analyzed for three nine-day intervals, including quiet periods and periods of geomagnetic storms. It was shown that relativistic electron fluxes increase considerably when the power of global Pc5 pulsations and the index of midlatitude irregular Pi1 pulsations increase simultaneously. The correlation between the characteristics of Pi1 and Pc5 geomagnetic pulsations and the level of the relativistic electron flux at geostationary orbit during the magnetic storm recovery phase were studied. It was shown that the correlation coefficient of the relativistic electron maximal fluxes during the magnetic storm recovery phase with the parameter of midlatitude Pi1 pulsations is slightly higher than such a correlation coefficient with the solar wind velocity.  相似文献   

18.
The occurrence of pearl-type (Pc 1) micropulsations recorded at the mid-latitude station Nagycenk (Hungary) during a half solar cycle showed a quite regular variation on this long time scale. Around solar activity maximum, the number of days with Pc 1 occurrence was rather low, while it began to increase during medium solar activity rising to a maximum around solar activity minimum. Pc 1 pulsations have been analyzed in relation to further parameters and on a shorter time scale, too. Based on data of 2 years with maximum Pc 1 occurrence (around solar activity minimum in 1985 and 1986), a seasonal variation was also found. Additionally, it was confirmed that pearl-type micropulsations might frequently occur, on and after days, with geomagnetic disturbances. At Nagycenk, the selected geomagnetic disturbances were generally associated with an increased ionospheric absorption of radio waves caused by enhanced ionization due to particle precipitation from the magnetosphere into the lower ionosphere. Whistler observations carried out at Panska Veš (a station in the Czech Republic) showed a significant whistler activity connected with these geomagnetic disturbances, however, no after-effect appeared in whistler activity. One of the main goals of the present study was to find a relationship between Pc 1 pulsations and whistlers. Results revealing an increased whistler activity associated with Pc 1 occurrences confirm our previous findings rather convincingly. The latter ones hinted at the probability that certain magnetospheric configurations, e.g. geomagnetic field line shells and whistler ducts are closely connected, as similar positions of the two structures were found within the magnetosphere when characteristics of Pc 3 pulsations and whistlers were analyzed.  相似文献   

19.
The variations in the daily average energy of geomagnetic pulsations and noise in the Pc3 (20–60 mHz) and Pc4 (10–19 mHz) frequency bands in the polar cap have been studied based on the data from P5 Antarctic station (corrected geomagnetic latitude ?87°) from November 1998 to November 1999. The daily average pulsation energy has been calculated using the method for detecting the wave packets, the spectral amplitude of which is higher than the threshold level, from the dynamic spectrum. A spectral analysis of the energy of pulsations and noise in the Pc3 and Pc4 bands, performed using the maximal entropy method, has revealed periodicities of 18 days in the local winter and 26, 13, and 7–9 days during the local summer. The simultaneous and coherent variations with periods of 26, 13, and 7–9 days in the solar wind velocity and IMF orientation indicate that the variations in the Pc3–4 wave energy in the polar cap at a sunlit ionosphere are mainly controlled by the parameters of the interplanetary medium. The variations in the Pc3–4 wave energy with a period of 18 days are observed only during the local winter and are supposedly related to the variations in the ionospheric conductivity modulated by planetary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号