首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A six-member ensemble of 60?km resolution global atmospheric simulations has been performed for studying future climate scenarios of Pacific island nations. The simulations were performed using the CSIRO Conformal Cubic Atmospheric Model (CCAM), driven by bias-corrected sea surface temperatures (SSTs) provided by six Coupled Model Intercomparison Project phase 3 global climate models (GCMs) from the Intergovernmental Panel on Climate Change Fourth Assessment Report for the period 1971–2100. This paper focuses on results for the representation of the current climate in the tropical region, a region where the “cold tongue” problem is apparent in all host GCMs. The SST bias-correction and the fine horizontal resolution employed in the CCAM simulations produce a significant improvement over the host GCMs in the rainfall patterns for the transient seasons March–April–May and September–October–November, and a moderate improvement for December–January–February and June–July–August. CCAM also simulates improved rainfall patterns over the South Pacific Convergence Zone. The performance of other tropical features, such as El Ni?o Southern Oscillation and the Walker circulation, is also evaluated.  相似文献   

2.
The study deals with changes in large-scale atmospheric circulation (represented by circulation types) and associated surface air temperatures as projected in an ensemble of regional climate models (RCMs) from the ENSEMBLES project. We examine changes of circulation type frequencies and means of daily maximum and minimum temperatures within circulation types in individual seasons for two time slices of transient runs under the SRES A1B scenario (2021–2050 and 2071–2100) with respect to the control period (1961–1990). To study the influence of driving data, simulations of the driving general circulation models (GCMs) also are evaluated. We find that all models project changes of atmospheric circulation that are statistically significant for both future time slices. The models tend to project strengthening of the westerly circulation in winter and its weakening in summer. We show that increases of daily maximum and minimum temperatures in all seasons differ for individual circulation types. There are, however, only few features of the projected changes in the future circulation–temperature links that are common among the models, in particular relatively smaller warming for westerly types. Only in winter, projected changes in circulation types tend to contribute to the projected overall warming. This effect is negligible and mostly opposite in the other seasons. We also detect a strong influence of driving data on RCMs’ simulation of atmospheric circulation and temperature changes.  相似文献   

3.
Southeast Australia is a region of high rainfall variability related to major climate drivers, with a long-term declining trend in cool-season rainfall. Projections of future rainfall trends are uncertain in this region, despite projected southward shifts in the subtropical ridge and mid-latitude westerlies. This appears to be related to a poor representation of the spatial relationships between rainfall variability and zonal wind patterns across southeast Australia in the latest Coupled Model Intercomparison Project ensemble, particularly in the areas where weather systems embedded in the mid-latitude westerlies are the main source of cool-season rainfall. Downscaling with regional climate models offers improvements in the mean rainfall climatology, and shows some ability to correct for poor modelled relationships between rainfall and zonal winds along the east coast of Australia. However, it provides only minor improvements to these relationships in southeast Australia, despite the improved representation of topographic features. These results suggest that both global and regional climate models may fail to translate projected circulation changes into their likely rainfall impacts in southeast Australia.  相似文献   

4.
Cutoff lows are an important source of rainfall in the mid-latitudes that climate models need to simulate accurately to give confidence in climate projections for rainfall. Coarse-scale general circulation models used for climate studies show some notable biases and deficiencies in the simulation of cutoff lows in the Australian region and important aspects of the broader circulation such as atmospheric blocking and the split jet structure observed over Australia. The regional climate model conformal cubic atmospheric model or CCAM gives an improvement in some aspects of the simulation of cutoffs in the Australian region, including a reduction in the underestimate of the frequency of cutoff days by more than 15 % compared to a typical GCM. This improvement is due at least in part to substantially higher resolution. However, biases in the simulation of the broader circulation, blocking and the split jet structure are still present. In particular, a northward bias in the central latitude of cutoff lows creates a substantial underestimate of the associated rainfall over Tasmania in April to October. Also, the regional climate model produces a significant north–south distortion of the vertical profile of cutoff lows, with the largest distortion occurring in the cooler months that was not apparent in GCM simulations. The remaining biases and presence of new biases demonstrates that increased horizontal resolution is not the only requirement in the reliable simulation of cutoff lows in climate models. Notwithstanding the biases in their simulation, the regional climate model projections show some responses to climate warming that are noteworthy. The projections indicate a marked closing of the split jet in winter. This change is associated with changes to atmospheric blocking in the Tasman Sea, which decreases in June to November (by up to 7.9 m s?1), and increases in December to May. The projections also show a reduction in the number of annual cutoff days by 67 % over the century, together with an increase in their intensity, and these changes are strongest in spring and summer.  相似文献   

5.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.  相似文献   

6.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

7.
For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.  相似文献   

8.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

9.
The projected climate change signals of a five-member high resolution ensemble, based on two global climate models (GCMs: ECHAM5 and CCCma3) and two regional climate models (RCMs: CLM and WRF) are analysed in this paper (Part II of a two part paper). In Part I the performance of the models for the control period are presented. The RCMs use a two nest procedure over Europe and Germany with a final spatial resolution of 7 km to downscale the GCM simulations for the present (1971–2000) and future A1B scenario (2021–2050) time periods. The ensemble was extended by earlier simulations with the RCM REMO (driven by ECHAM5, two realisations) at a slightly coarser resolution. The climate change signals are evaluated and tested for significance for mean values and the seasonal cycles of temperature and precipitation, as well as for the intensity distribution of precipitation and the numbers of dry days and dry periods. All GCMs project a significant warming over Europe on seasonal and annual scales and the projected warming of the GCMs is retained in both nests of the RCMs, however, with added small variations. The mean warming over Germany of all ensemble members for the fine nest is in the range of 0.8 and 1.3 K with an average of 1.1 K. For mean annual precipitation the climate change signal varies in the range of ?2 to 9 % over Germany within the ensemble. Changes in the number of wet days are projected in the range of ±4 % on the annual scale for the future time period. For the probability distribution of precipitation intensity, a decrease of lower intensities and an increase of moderate and higher intensities is projected by most ensemble members. For the mean values, the results indicate that the projected temperature change signal is caused mainly by the GCM and its initial condition (realisation), with little impact from the RCM. For precipitation, in addition, the RCM affects the climate change signal significantly.  相似文献   

10.
Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961–1990) and projections for the IPCC A2 high emission scenario for 2071–2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N–15°S band, both in summer and especially in winter, reaching up to 6–8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.  相似文献   

11.
A regional climate model, the Weather Research and Forecasting (WRF) Model, is forced with increased atmospheric CO2 and anomalous SSTs and lateral boundary conditions derived from nine coupled atmosphere–ocean general circulation models to produce an ensemble set of nine future climate simulations for northern Africa at the end of the twenty-first century. A well validated control simulation, agreement among ensemble members, and a physical understanding of the future climate change enhance confidence in the predictions. The regional model ensembles produce consistent precipitation projections over much of northern tropical Africa. A moisture budget analysis is used to identify the circulation changes that support future precipitation anomalies. The projected midsummer drought over the Guinean Coast region is related partly to weakened monsoon flow. Since the rainfall maximum demonstrates a southward bias in the control simulation in July–August, this may be indicative of future summer drying over the Sahel. Wetter conditions in late summer over the Sahel are associated with enhanced moisture transport by the West African westerly jet, a strengthening of the jet itself, and moisture transport from the Mediterranean. Severe drought in East Africa during August and September is accompanied by a weakened Indian monsoon and Somali jet. Simulations with projected and idealized SST forcing suggest that overall SST warming in part supports this regional model ensemble agreement, although changes in SST gradients are important over West Africa in spring and fall. Simulations which isolate the role of individual climate forcings suggest that the spatial distribution of the rainfall predictions is controlled by the anomalous SST and lateral boundary conditions, while CO2 forcing within the regional model domain plays an important secondary role and generally produces wetter conditions.  相似文献   

12.
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16°N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to ??upper tropospheric warming effect?? predominates over the ??moisture build-up effect?? in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.  相似文献   

13.
This study proposes primary diagnostic metrics to evaluate the integrated structure of interdecadal changes of East Asian climate in mid-summer (July–August) over the recent half-century (1955–2000) in numerical models. The metrics are applied to comprehensively examine the performance of BCC_AGCM (Beijing Climate Center atmospheric general circulation model) version 2.0.1. When forced by historical sea surface temperatures (SST), the ensemble simulation with the BCC_AGCM reasonably reproduced the coherent interdecadal changes of rainfall, temperature and circulation. The main feature of the “southern-flooding-and-northern-drought” rainfall change is captured by the model. Correspondingly, the tropospheric cooling in the upper and middle troposphere, the southward shift of upper level westerly jet and weakening of the low-level southwesterly monsoon flow are also reproduced, as well as their relationships with rainfall changes. One of the main deficiencies of the simulation is that the amplitudes of the changes of tropospheric cooling and large-scale circulation are both much weaker than those in reanalysis, and they are consistent with the rainfall deficiency. Also, the upper and middle troposphere cooling center and decreasing of upper-level westerly jet axis shift westward in the model simulations compared with that in the observations. Overall, although BCC_AGCM shows problems in simulating the interdecadal changes of East Asia climate, especially the amplitude and locations of change centers, it reasonably represents the observed configuration of rainfall variation and the associated coherent temperature and circulation changes. Therefore, it could be further used to discuss the mechanisms of the interdecadal variation in East Asia. Meanwhile, the reasonably reproduced configuration of rainfall and its associated large-scale circulation by SST-forced runs indicate that the interdecadal variations in East Asia could mostly arise from the regional response to the global climate change.  相似文献   

14.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

15.
A link between Arctic sea ice and recent cooling trends over Eurasia   总被引:9,自引:1,他引:8  
S. D. Outten  I. Esau 《Climatic change》2012,110(3-4):1069-1075
A band of cooling that extends across mid-latitude Eurasia is identified in the wintertime surface air temperatures of the latest ECMWF reanalysis. This cooling is related to extreme warming around the Kara Sea through changes in the meridional temperature gradient. Surface temperatures in the Arctic have risen faster than those at lower latitudes, and as the Arctic warming increases, this north–south temperature gradient is weakened. This change in the meridional temperature gradient causes a decrease in the westerly winds that help maintain the mild European climate by transporting heat from the Atlantic. Since decreasing sea ice concentrations have been shown to be a driving factor in Arctic amplification, a singular value decomposition analysis is used to confirm the co-variability of the Arctic sea ice, including the Kara Sea, and the temperatures over the mid-latitude Eurasia. These findings suggest that decreasing sea ice concentrations can change the meridional temperature gradient and hence the large-scale atmospheric flow of the Northern Hemisphere.  相似文献   

16.

This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 \(^{\circ }\)C across the entire peninsula. Temperature increase is more substantial in autumn and winter (\(\sim \) 2 \(^{\circ }\)C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation (\(\sim \) 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.

  相似文献   

17.
Many coupled ocean–atmosphere general circulation models (GCMs) suffer serious biases in the tropical Atlantic including a southward shift of the intertropical convergence zone (ITCZ) in the annual mean, a westerly bias in equatorial surface winds, and a failure to reproduce the eastern equatorial cold tongue in boreal summer. The present study examines an ensemble of coupled GCMs and their uncoupled atmospheric component to identify common sources of error. It is found that the westerly wind bias also exists in the atmospheric GCMs forced with observed sea surface temperature, but only in boreal spring. During this time sea-level pressure is anomalously high (low) in the western (eastern) equatorial Atlantic, which appears to be related to deficient (excessive) precipitation over tropical South America (Africa). In coupled simulations, this westerly bias leads to a deepening of the thermocline in the east, which prevents the equatorial cold tongue from developing in boreal summer. Thus reducing atmospheric model errors during boreal spring may lead to improved coupled simulations of tropical Atlantic climate.  相似文献   

18.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

19.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

20.
 Atmosphere-only general circulation models are shown to be a useful tool for detecting an anthropogenic effect on climate and understanding recent climate change. Ensembles of atmospheric runs are all forced with the same observed changes in sea surface temperatures and sea-ice extents but differ in terms of the combinations of anthropogenic effects included. Therefore, our approach aims to detect the `immediate' anthropogenic impact on the atmosphere as opposed to that which has arisen via oceanic feedbacks. We have adapted two well-used detection techniques, pattern correlations and fingerprints, and both show that near-decadal changes in the patterns of zonal mean upper air temperature are well simulated, and that it is highly unlikely that the observed changes could be accounted for by sea surface temperature variations and internal variability alone. Furthermore, we show that for zonally averaged upper air temperature, internal `noise' in the atmospheric model is small enough that a signal emerges from the data even on interannual time scales; this would not be possible in a coupled ocean-atmosphere general circulation model. Finally, although anthropogenic forcings have had a significant impact on global mean land surface temperature, we find that their influence on the pattern of local deviations about this mean is so far undetectable. In order to achieve this in the future, as the signal grows, it will also be important that the response of the Northern Hemisphere mid-latitude westerly flow to changing sea surface temperatures is well simulated in climate model detection studies. Received: 3 December 1999 / Accepted: 30 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号