首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We welcome the comments made by Lustrino [M. Lustrino, Pyroxenites everywhere, Earth Planet. Sci. Lett., this issue.] on the high-pressure experimental melting phase relations of anhydrous garnet pyroxenite reported by Keshav et al. [S. Keshav, G.H. Gudfinnsson, G. Sen, Y. Fei, High-pressure melting experiments on garnet clinopyroxenite and the alkalic-to-tholeiitic transition in ocean-island basalts, Earth Planet. Sci. Lett. 223 (2004) 365–379.]. Such healthy debates, in our view, are needed to promote our understanding on the origin of oceanic-island basalts (OIB).  相似文献   

2.
On the basis of a numerical simulation, Klose [Earth Planet. Sci. Lett. 256: 547–553 (2007)] proposed that the MW = 5.2–5.6 earthquake that nucleated beneath Newcastle (New South Wales, Australia) at 10.30 AM December 28, 1989 (AEST), was the result of 200yr of coal mining in the region. We argue here that Klose's [Earth Planet. Sci. Lett. 256: 547–553 (2007)] ultimate conclusion is not supported by his own model or by available geological and seismic data. In particular, the 1989 Newcastle earthquake was not anomalous with respect to regional seismic activity.  相似文献   

3.
4.
Based on tomographic images, Nakajima and Hasegawa [Earth Planet. Sci. Lett., 254 (2007), 90–105] discussed that fluids derived from the stagnant Pacific plate caused the back-arc volcanisms in SW Japan. Geochemical features of the volcanic products in SW Japan, however, suggest that fluids dehydrated from the stagnant slab did not play a significant role in the magma genesis. Therefore, discussions of Nakajima and Hasegawa should be revised.  相似文献   

5.
In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837–845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634–647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15–30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius].  相似文献   

6.
We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31–43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285–376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247–3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800–2600 BC.  相似文献   

7.
This paper shows how 226Ra–230Th disequilibria can be used to date Holocene volcanic rocks from some well selected volcanoes. A systematic study of these disequilibria on historical or well-dated volcanic samples is indeed first required to test the applicability of this method. Two examples are described here to illustrate its potential. In the case of Mt. Etna, the good correlation observed between (226Ra)0 activities at the time of eruption and Th contents in lava flows from the last two millennia [M. Condomines, J.C. Tanguy, V. Michaud, Magma dynamics at Mt. Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas, Earth Planet. Sci. Lett. 132 (1995) 25–41] is used to infer the ages of several newly analysed lava flows. The calculated ages are in good agreement with those deduced from the archaeomagnetic curve describing the variation of the geomagnetic field direction in southern Italy [J.C. Tanguy, I. Bucur, J.F.C. Thompson, Geomagnetic secular variation in Sicily and revised ages of historic lavas from Mt. Etna, Nature 318 (1985) 453–455, J.C. Tanguy, M. Le Goff, V. Chillemi, A. Paiotti, C. Principe, S. La Delfa, G. Patane, Variation séculaire de la direction du champ géomagnétique enregistrée par les laves de l'Etna et du Vésuve pendant les deux derniers millénaires, C. R. Acad. Sci. Paris 329 (1999) 557–564, J.C. Tanguy, M. Le Goff, C. Principe, S. Arrighi, V. Chillemi, A. Paiotti, S. La Delfa, G. Patane, Archaeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet. Sci. Lett. 211 (2003) 111–124]. We also present a whole set of new U-series data on historical, recent, and older samples from Merapi (Indonesia), and show that the (226Ra)/Ba ratio has probably maintained a quasi-steady state value during at least the past four millennia, and can be used to infer the (226Ra)0/Ba ratio of old volcanics at the time of eruption, and thus their ages. Comparison with 14C ages available on three samples [R. Gertisser, J. Keller, Temporal variations in magma composition at Merapi volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity, J. Volcanol. Geotherm. Res. 123 (2003) 1–23] shows an excellent agreement. These dating methods, based on the post-eruptive decrease of 226Ra excesses can be confidently used to date young rocks on both volcanoes, an important step to infer their recent eruptive history and magmatic evolution. It also opens the possibility to extend the geomagnetic field variation curve back into the past few millennia. The promising results obtained in this work should encourage new systematic U-series studies to test the applicability of such methods to other permanently active volcanoes showing 226Ra excesses.  相似文献   

8.
Experiments [T. Irifune (1994) Nature 370, 131–133; E. Ito et al. (1998) Geophys. Res. Lett. 25, 821–824; A. Kubo, M. Akaogi (2000) Phys. Earth Planet. Int. 121, 85–102] indicate that (Mg,Fe)SiO3 perovskite, commonly believed to be the most abundant mineral in the Earth, is the preferred host phase of Al2O3 in the Earth’s lower mantle. Aiming to better understand the effects of Al2O3 on the thermoelastic properties of the lower mantle, we use atomistic models to examine the chemistry and elasticity of solid solutions within the MgSiO3(perovskite)–Al2O3(corundum)–MgO(periclase) mineral assemblage under conditions pertinent to the lower mantle: low Al cation concentrations, P=25–100 GPa, and T=1000–2000 K. We assess the relative stabilities of two likely substitution mechanisms of Al into MgSiO3 perovskite in terms of reactions involving MgSiO3, MgO, and Al2O3, in a manner similar to the 0 Kelvin calculations of Brodholt [J.P. Brodholt (2000) Nature 407, 620–622] and Yamamoto et al. [T. Yamamoto et al. (2003) Earth Planet. Sci. Lett. 206, 617–625]. We determine the equilibrium composition of the assemblage by examining the chemical potentials of the Al2O3 and MgO components in solid solution with MgSiO3, as functions of concentration. We find that charge coupled substitution dominates at lower mantle pressures and temperatures. Oxygen vacancy-forming substitution accounts for 3–4% of Al substitution at shallow lower mantle conditions, and less than 1% in the deep mantle. For these two pressure regimes, the corresponding adiabatic bulk moduli of aluminous perovskite are 2% and 1% lower than that of pure MgSiO3 perovskite.  相似文献   

9.
We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH?=?7.8 and MIW?=?7.6 considering surface wave and moment magnitude, respectively) than the value M?=?8.2 listed in the considered catalog. These values are more in agreement with the value M S?=?7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH?=?6.9 and MIW?=?6.8).  相似文献   

10.
New location features for possible implementation by the International Seismological Centre in its standard location procedures are tested using a set of 156 well-located and geographically well-distributed earthquakes and explosions. The tests are performed using the Engdahl et al. ([Engdahl, E.R., Van der Hilst, R.D., Buland, R.P., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Am. 88, 3295-3314]; EHB) location algorithm with the 1-D reference Earth model ak135 [Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int. 122, 108-124]. Weighting by phase variance as a function of distance improves location accuracy by 7%. Use of later phase arrival times does not result in a significant improvement in location or depth for events with observing stations well distributed in azimuth. However, with application of an improved phase identification technique, depth phases provide significantly better estimates of focal depth.  相似文献   

11.
New records of past sea surface temperatures (SSTs) were derived in the 30-50 kyr B.P. time interval from a core located at 45°S in the Southern Indian Ocean, MD94-103. To investigate the climatic phasing between the Southern Indian Ocean, the Greenland and the Antarctic ice, the magnetic signal of core MD94-103 was synchronized at better than millennial accuracy in the vicinity of the Laschamp geomagnetic to a reference record, NAPIS-75, already placed on the GISP2 age model. Coccolithophorid and diatom species abundances both point to a cooling of surface waters during H4. Specific diatoms also indicate lower salinity waters during the same time interval. These observations do not support the idea that the South hemisphere warmed 1.5-2 kyr before the North hemisphere (Nature 394 (1998) 739). Rather, alkenone-derived SSTs suggest that cold conditions have characterized the surface waters in the south latitudes during H4 and H5, and that temperature at evaporation sites contributed to the isotopic events A1 and A2 visible in the isotopic records of central Antarctica (Earth Planet. Sci. Lett. 177 (2000) 219). SSTs obtained from foraminifera assemblages depict somewhat different temperature patterns, possibly indicative of water stratification.  相似文献   

12.
13.
The paleomagnetic data sets from the British Tertiary Igneous Province (BTIP) have recently been criticized as being unreliable and discordant with data from elsewhere in the North Atlantic Igneous Province (NAIP) [Riisager et al. Earth Planet. Sci. Lett. 201 (2002) 261–276; Riisager et al. Earth Planet. Sci. Lett. 214 (2003) 409–425]. We offer new paleomagnetic data for the extensive lava flow sequence on the Isle of Mull, Scotland, and can confirm the paleomagnetic pole positions emanating from important earlier studies. Our new north paleomagnetic pole position for Eurasia at 59 ± 0.2 Ma has latitude 73.3°N, longitude 166.2°E (dp/dm = 5.2/7.0).A re-evaluation and an inter-comparison of the paleomagnetic database emanating from the NAIP were carried out to test for sub-province consistency. We find a general agreement between the Eurasian part of NAIP (BTIP and Faeroes) and East Greenland data. However a compilation of West Greenland data displays a large and unexplained dispersion. We speculate on if this is related to different sense of block rotation of the Tertiary West Greenland constituents. Combining all data from the NAIP constituents, give a pole position at 75.0°N, 169.9°E (N = 25, K = 84.3, A95 = 3.2) in Eurasian reference frame.  相似文献   

14.
A light fluid accumulation on the Core–Mantle Boundary due to barodiffusion is considered in an earlier paper [S.I. Braginsky. Formation of the stratified ocean of the core. Earth Planet. Sci. Lett. 243 (2006) 650–656], assuming that the Earth's core consists of binary solution of iron and some light admixture. The accumulated light fluid forms on the Core–Mantle Boundary a stably stratified layer; we call this layer the Stratified Ocean of the Core (SOC). In this paper a similar mechanism of the SOC formation is considered assuming that the core material is a ternary alloy of iron and two light components, in conformity with the new information about the core chemical physics.  相似文献   

15.
We investigated the physical properties in the upper mantle beneath the Philippine Sea using a theoretical relation derived by Karato [Mapping water content in the upper mantle. Subduction factory, AGU Monograph, in press]. From the attenuation model of Shito and Shibutani [Phys. Earth Planet. Interact., in press] and the velocity model of Widiyantoro et al. [Earth Planet. Sci. Lett. 173 (1999) 91], observed attenuation and velocity anomalies were evaluated to explain the temperature, water content, and chemical heterogeneities in the target area. The results indicate that the observed anomalies in the shallower regions (50–200 km) may be due to chemical composition effects (e.g., concentration of iron), in addition to the temperature and water content anomalies. In contrast, for the deep upper mantle (300–400 km), the observations can be explained by only the effects of high water content (10–50 times higher than the average mantle). These inferred properties of the mantle are consistent with the tectonic history of the Philippine Sea region, which has had a long history of subduction and active magmatism.  相似文献   

16.
This paper presents the results of a disaggregation and thin section analysis of the size distribution of chondrules in two friable meteorites, Bjurböle and Chainpur. Dodd [Earth Planet. Sci. Lett. 30 (1976) 281] found in chondrites that the size distribution of metal and silicate particles (be they chondrules, chondrule fragments or independent grains in the matrix) obey Rosin's law. He used thin sections of meteorites. Martin and Mills [Earth Planet. Sci. Lett. 33 (1976) 239] imply that thin section studies are not valid and that meteoritic disaggregation and the subsequent measurement of the individual particles is required. They found that the “near-spherical” chondrules picked out from the disaggregated meteorite do not obey Rosin's law and suggest that these chondrules result from the melting of dust, rather than from impact as suggested by Dodd. The Rosin's law criterion could be crucial to the acceptabilities of these theories.In thin sections both droplet and lithic fragment chondrules can be easily identified. The Bjurböle section had 33 ± 4% of its area occupied by droplet chondrules and 30 ± 3% occupied by lithic fragment chondrules. The matrix occupied 37 ± 2%. Disaggregation of 4 g of Bjurböle produced 27% (by mass) near-spherical chondrules. The lithic fragment chondrules had a degree of friability similar to that of the matrix. Due to this they unfortunately broke up during the disaggregation process. The size distribution of droplet and lithic fragment chondrules was found to be similar. All chondrules were found to obey Rosin's law.The size distribution of the disaggregated chondrules has been used to calculate the expected thin section size distribution by assuming that chondrules are sectioned randomly. Empirical correction factors have thus been obtained which enable observed thin-section parameters to be converted into true parameters. The observed and expected thin section distributions agreed well. On disaggregation 4 g of Bjurböle yielded 955 near-spherical chondrules. A 0.78-cm2 thin section of Bjurböle revealed 61 droplet and 57 lithic fragment chondrules so to obtain comparable precision large (~10 cm2) thin sections or slices must be used.The near-spherical chondrules disaggregated from Bjurböle had a median diameter of 0.688 ± 0.003 mm, a mean density of 3.258 ± 0.008 g cm?3 and a median mass of 5.6 × 10?4 g. Their diameters ranged between 0.25 ± 0.01 mm and 3.67 mm. The lower limit is considerably below the value of 0.4 mm obtained by Martin and Mills.  相似文献   

17.
Centroid–moment-tensor solutions are presented for 1034 earthquakes that occurred during 2002. The solutions are obtained using the method of Dziewonski et al. [Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852] and applying corrections for aspherical Earth structure represented by the whole-mantle shear-velocity model SH8/U4L8 of Dziewonski and Woodward [Dziewonski, A.M., Woodward, R.L., Acoustic imaging at the planetary scale, in: Emert, H., Harjes, H.-P. (Eds.), Acoustical Imaging, vol. 19. Plenum Press, New York, 1992, pp. 785–797]. The model of anelastic attenuation of Durek and Ekström [Durek, J.J., Ekström, G., 1996. A radial model of anelasticity consistent with long-period surface wave attenuation. Bull. Seism. Soc. Am. 86, 144–158] is used to predict the decay of the waveforms. The focal mechanisms of the largest, or otherwise significant, earthquakes of 2002 are reviewed.  相似文献   

18.
In order to derive a radiometric age marker for the end of the penultimate glacial–interglacial transition, we compiled published U-series isotope measurements on corals from the period extending from stage 6 to the middle of the last interglacial, and computed the corresponding open-system ages using Thompson et al. model (Thompson, W.G., Spiegelman, M.W., Goldstein, S.L., Speed, R.C., An open-system model for U-series age determinations of fossil corals. Earth Planet. Sci. Lett. 210 (2003) 365–381). We obtain a global mean age of 126 calendar kyr BP (ka) ± 1.7kyr (2σ) for the beginning of the last interglacial sea level high stand. After showing that the phase relationships observed between changes in sea level, North Atlantic benthic and planktonic foraminifera oxygen isotopic records, and atmospheric methane over the last deglaciation were likely also valid over the penultimate deglaciation, we derive an age of 131.2ka ± 2kyr (2σ) for the abrupt increase in atmospheric CH4 and North Atlantic surface temperature marking the end of the penultimate glacial–interglacial transition. This age is consistent with U–Th dates of the penultimate glacial–interglacial transition recorded in speleothems from sites where speleothems isotopic records are synchronous with North Atlantic temperature records over the last deglaciation. Finally, we show that the phase obtained between the climatic response and northern hemisphere summer insolation is not constant from Termination II to Termination I, implying that northern hemisphere summer insolation alone cannot explain the timing of terminations.  相似文献   

19.
New Hf isotope and trace element data on mid-ocean ridge basalts (MORB) from the Pacific Ocean basin are remarkably uniform (176Hf/177Hf≈0.28313–0.28326) and comparable to previously published data [Salters, Earth Planet. Sci. Lett. 141 (1996) 109–123; Patchett, Lithos 16 (1983) 47–51]. Atlantic MORB have 176Hf/177Hf ranging from 0.28302 to 0.28335 confirming the wide range originally identified by Patchett and Tatsumoto [Geophys. Res. Lett. 7 (1980) 1077–1080]. Indian MORB define an even wider range, from 0.28277 to 0.28337, but three exotic samples have very unradiogenic Hf isotope compositions. Their very low 176Hf/177Hf ratios, together with their trace element characteristics, require the presence of unusual plume-type material beneath the Indian ridge. All other Indian MORB have uniform Hf isotope compositions at about 0.2832, and define a small field displaced to the right of other MORB in Hf–Nd isotope space. The distinct nature of Indian MORB is best explained by the presence in Indian depleted mantle of old recycled oceanic crust and pelagic sediments. Sm/Hf ratios calculated from new high-precision rare earth element and Hf trace element data do not vary in MORB in the same way as in ocean island basalts (OIB): ratios are constant in OIB, but decrease with increasing Sm contents in MORB. The constancy of Sm/Hf in OIB is probably due to an overwhelming influence of residual garnet during melting. By contrast, the decrease of Sm/Hf in MORB is due to the effect of clinopyroxene in the residue of melting beneath ridges, an interpretation confirmed by quantitative modeling of melting. The relationship between Sm/Nd and Lu/Hf ratios in MORB does not require the presence of garnet in the residual mineralogy. The decoupling of Lu/Hf ratios and Hf isotope compositions – the so-called Hf paradox [Salters and Hart, EOS Trans. Am. Geophys. Union 70 (1989) 510] – can be explained by melting dominantly in the spinel field at shallow depths beneath mid-ocean ridges.  相似文献   

20.
D/H ratios of C-H hydrogen in cellulose extracted from 19 successive increments of wood from three adjacent tree rings from aPinus radiata grown in New Zealand in 1915–1918 follow qualitatively the isotopic pattern of the D/H ratio of the precipitation of the Kailaia area in New Zealand. This relationship between the D/H ratio of the cellulose and precipitation is the opposite to that claimed by Wilson and Grinsted [Nature 257 (1975) 287–288]. Consequently their biochemical thermometer based on the relationship between the D/H ratio in cellulose of thePinus radiata and temperature has no basis. Their arguments based on the data of Epstein and Yapp [Earth Planet. Sci. Lett. 30 (1976) 252–261] to support their biochemical thermometer is also shown to be invalid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号