首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6 km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22 s for locations from the standard one-dimensional model to 0.13 s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6–5.0 km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20–25% slower than velocities outboard of the region (5.0–6.5 km/s). Moderately low velocities (4.5–6.0 km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10 km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0–5.7 km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5–6.5 km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1 km to depths of 0 to 4 km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to − 40 mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik–Katmai–Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes.  相似文献   

2.
Deception Island is a volcanic island with a flooded caldera that has a complex geological setting in Bransfield Strait, Antarctica. We use P-wave arrivals recorded on land and seafloor seismometers from airgun shots within the caldera and around the island to invert for the P-wave velocity structure along two orthogonal profiles. The results show that there is a sharp increase in velocity to the north of the caldera which coincides with a regional normal fault that defines the northwestern boundary of the Bransfield Strait backarc basin. There is a low-velocity region beneath the caldera extending from the seafloor to > 4 km depth with a maximum negative anomaly of 1 km/s. Refracted arrivals are consistent with a 1.2-km-thick layer of low-velocity sediments and pyroclastites infilling the caldera. Synthetic inversions show that this layer accounts for only a small portion of the velocity anomaly, implying that there is a significant region of low velocities at greater depths. Further synthetic inversions and melt fraction calculations are consistent with, but do not require, the presence of an extensive magma chamber beneath the caldera that extends downwards from ≤ 2 km depth.  相似文献   

3.
 Kuju Volcano lies near Aso Caldera at the center of Kyushu Island, western Japan. After a few hundred years of dormancy, a phreatic explosion accompanied by a small ash eruption occurred on 11 October 1995. This study was undertaken to determine the subsurface seismic velocity structure associated with the active magmatic regime in the Kuju volcanic region. The three-dimensional, upper crustal, P-wave velocity structure beneath Kuju Volcano was determined using methods for the simultaneous inversion of P-wave arrival times from local earthquakes in and around the Kuju volcanic region for velocities and hypocentral parameters. Results reveal two shallower low-velocity anomalies located in the northern and southern parts of Kuju Volcano, consistent with the presence of significant negative Bouguer gravity anomalies. In addition, a high-velocity anomaly is located approximately 5 km northwest of Mt. Kuju, one of the domes in Kuju Volcano. Beneath this high-velocity anomaly, a low-velocity anomaly is present. This velocity structure suggests a magmatic regime that has a lid consisting of cooled solid material overlying a chamber of partially molten material. Received: 23 September 1997 / Accepted: 20 June 1998  相似文献   

4.
The attenuation of amplitude is seen in seismic waves which pass through the central region of the Aso caldera, in Kyushu, Japan. It is also recognized from spectral analysis of seismic waves that the higher frequencies of the P-wave are reduced in the waves which pass through the central region of the caldera. It is shown that the relative attenuation increases remarkably for the frequency range of 5 to 10 Hz. The specific attenuation factor Q of the P-wave train is about 100. From the surface projection of the ray paths with low Q values through the Aso caldera to each station, the attenuating region is located beneath the center of the caldera, extending to the north of the central cones. In conjunction with the low Q value of the P-wave and the decreases of S-wave amplitudes, the relative P-wave residual times have comparatively large values for seismic waves passing through the central region beneath the caldera. In order to attempt to provide additional information on the depth configuration of the attenuating material, the ray paths of P-wave's first arrivals are located in three-dimensional space. It indicates that the low-velocity material is located beneath the center of the caldera at depths of about 6 to 9 km. However, lowvelocity anomalies above the depth of 6 km and below the depth of 15 km were not able to be detected, because most of the available seismic ray paths had crossed the caldera at depths of about 6 to 15 km. Furthermore, the relative residual times have numerous errors resulting from incorrect hypocenter locations, origin times, inhomogeneities in the structure and uncertainty of the velocity structure. At shallow depths in the Aso caldera, refraction or reflection studies are required for an accurate estimate of the structure and more detailed properties of the attenuating material.  相似文献   

5.
Guagua Pichincha, located 14 km west of Quito, Ecuador, is a stratovolcano bisected by a horseshoe-shaped caldera. In 1999, after some months of phreatic activity, Guagua Pichincha entered into an eruptive period characterized by the extrusion of several dacitic domes, vulcanian eruptions, and pyroclastic flows. We estimated the three-dimensional (3-D) P-wave velocity structure beneath Guagua Pichincha using a tomographic inversion method based on finite-difference calculations of first-arrival times. Hypocenters of volcano-tectonic (VT) earthquakes and long-period (LP) events were relocated using the 3-D P-wave velocity model. A low-velocity anomaly exists beneath the caldera and may represent an active volcanic conduit. Petrologic analysis of eruptive products indicates a magma storage region beneath the caldera, having a vertical extent of 7–8 km with the upper boundary at about sea level. This zone coincides with the source region of deeper VT earthquakes, indicating that a primary magma body exists in this region. LP swarms occurred in a cyclic pattern synchronous with ground deformation during magma extrusions. The correlation between seismicity and ground deformation suggests that both respond to pressure changes caused by the cyclic eruptive behavior of lava domes.  相似文献   

6.
Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data (M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.  相似文献   

7.
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera,no obvious crustal low velocity layer is detected. In the volcanic re-gion,the thickness of crustal ...  相似文献   

8.
长白山火山区壳幔S波速度结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用面波层析成像和远震接收函数方法对长白山地区的地壳上地幔速度结构进行了研究。结果表明:长白山火山区附近存在岩石圈减薄、上地幔软流圈增厚以及上地幔S波速度降低等与上地幔高温物质有关的现象,它表明长白山的岩浆系统一直延伸到上地幔软流圈范围。天池火山区地壳内部存在明显的S波低速层,在离天池火山口较近的WQD台附近,低速层顶部埋深约8km,厚度近20km,S波最小速度约2.2km/s。在距离天池火山北部50km的EDO台地壳中没有明显的低速层。火山区S波速度结构总体表现出距离天池越近,地壳的V_P/V_S越大,低速层的厚度和幅度增加的特征,表明天池火山口附近地壳内部存在高温物质或岩浆囊。CBS台站不同方位的接收函数及反演结果表明,地表低速层厚度以及莫霍面深度存在随方位的变化。地表低速层在南部方向明显较厚,莫霍面深度在南部天池火山口方向存在小幅度抬升。CBS台站附近特殊的近地表速度结构可能是该台站记录的火山地震波形主频较低的主要因素。天池火山口附近莫霍面的小幅度抬升意味着存在与火山作用有关的壳幔物质交换通道  相似文献   

9.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

10.
The seismogenic layer thickness correlates with surface heat flow beneath the Japanese islands. However, this correlation is shown at restricted area, where seismic activity is high. In order to overcome this spatial limitation, we used another approach to estimate the regional thermal structure in the crust beneath the Japanese islands with more uniform coverage. The bottom depths of the magnetized crust determined from the spectral analysis of residual magnetic anomalies is generally interpreted as the level of the Curie point isotherm. We applied this method to estimate the crustal thermal structure in square windows of 2.125° × 2.125°. The obtained depths ranging from 11 to 30 km with average value of 18 km, correlate with the seismogenic layer thickness. It suggests that the Curie point depth is a useful indicator of the crustal thermal structure in these regions.  相似文献   

11.
Detailed total-intensity aeromagnetic surveys of the Kuttyaro and Aso caldera regions, eastern Hokkaido and central Kyushu, were made during early 1964 under the auspices of the U.S.-Japan Co-operative Science Program in conjunction with a project for geophysical studies of calderas in Japan. Each caldera has a maximum diameter of about 22 km; the flights cover a 60 × 60 km rectangular area in each region. The Kuttyaro survey also encompasses the older caldera Akan, south-west of Kuttyaro, and the younger caldera Mashu to the east. All three lie within the Chīshīma (Kurile) volcanic zone. The isomagnetic contour map shows this zone as a belt of short wave-length anomaies which trends east-northeast across the region. Broad wavelength anomalies with trends intersecting the Chīshīma belt at an acute angle probably reflect structural relief on the Neogene volcanic basement concealed beneath Kuttyaro pyroclastic flows. The centre of Kuttyaro caldera coincides with the sharp southern termination of a strong basement high, whereas caldera faults and post-caldera domes have little magnetic expression. Mashu caldera is marked by a minimum in the position of the caldera lake; a symmetrical positive anomaly centering southeast of the caldera suggests either a buried older volcanic edifice or an intrusion. Akan caldera is represented by a magnetic depression encompassing a positive anomaly produced by its central post-caldera cone. The depression extends north of the geologically-deduced boundary of the caldera and may include an earlier collapse structure. Several volcanoes and lava sequences in the region produce negative anomalies due to inverse polarization. The most significant feature of the Aso isomagnetic map is a large, elongate positive anomaly that occupies the southern half of the caldera and extends about one caldera diameter to the south-west along the trend of the Median Tectonic Line of south-west Japan. Whether the anomaly represents the pre-Tertiary basement complex or a younger intrusion perhaps associated with Aso eruptive activity is uncertain. However, the causative body is abruptly truncated within the caldera by a major east-south-east structure passing through the eastern rim and coincident with the approximate locus of resurgent central vent eruptions. The structure may be a fault system that provided egress for the Aso pyroclastic flows. Superimposed on the basement anomaly are the effects of the topography of the caldera, the superficial caldera structure, and the post-caldera cones. An area of intense solfataric activity in the Kuju group of young volcanoes north of Aso has a pronounced negative anomaly. These two surveys illustrate the utility of the magnetic method for investigations of basement structure in caldera regions. They have served as a guide in interpreting reconnaissance aeromagnetic profiles flown concurrently for this project across some 14 other calderas or caldera-like structures in the Japanese islands.  相似文献   

12.
利用面波和接收函数联合反演滇西地区壳幔速度结构   总被引:26,自引:13,他引:13       下载免费PDF全文
考虑到面波频散对介质S波速度、接收函数对界面深度的各自敏感性优势,综合利用面波和接收函数资料实现联合反演,求取滇西地区壳幔速度结构. 本文利用适配滤波频时分析技术处理覆盖滇西地区的长周期面波资料,获得105~1050s周期范围内的面波群速度频散,进而利用分格反演方法提取研究区内1°×1°网格纯路径频散;基于滇西地区宽频带三分量远震记录,经反褶积后得到台站下方的远震P波接收函数. 联立面波纯路径频散信息和接收函数资料建立系统方程,利用阻尼最小二乘法实现联合反演,从而获得滇西地区壳幔S波速度结构. 结果表明,滇西地区以红河断裂为界,东西两侧壳幔结构存在明显差异,断裂西侧约20km深度处存在一厚度为10km左右的低速层,而东侧并不明显;滇缅泰块体上的畹町、沧源一带属于上地幔低速区,而另一个地幔低速区则位于滇中块体上的康滇古隆起上,两处地幔低速区与大地高热流分布、强震活动具有较好的对应关系.  相似文献   

13.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   

14.
Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61–67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5–64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53–74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62–65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.  相似文献   

15.
中国南北带地壳和上地幔的三维速度图象   总被引:46,自引:7,他引:46  
本文采用作者提出的地震层析成象法得到了中国南北带地壳和上地幔的三维速度图象。通过误差和分辨分析,以及同爆炸地震测深剖面的比较,证明了成象结果的可靠性。 成象结果表明:1.南北带的地壳和上地幔存在显著的横向不均匀性,深达450km这种不均匀性还依然存在;2.地壳上部的速度图象与地表的已知地质特征明显相关:四川盆地显著低速,康滇地轴显著高速;3.中地壳在很大范围内存在低速层,其最低速度值达5.60km/s;4.在25°N-38°N和100.0°E-103.2°E的长条带内,上地幔顶部出现低速异常,异常速度值约为7.49km/s。 成象结果还清晰地勾划了各块体间的焊接边界。120km深度的速度图象表明,扬子准地台自秦岭以南以龙门-大巴和盐源-丽江台缘褶带为其西部边界;西南以哀劳山褶皱带为界;东南则以右江褶皱带内的南盘江为界。 统计表明,地震活动与南北带的速度结构相关:从20km以上的速度图象发现,大地震大都发生在高速和低速间的过渡条带上。  相似文献   

16.
在沙城以东的延庆盆地及其邻近区域内布设了由GDS-1000宽频带数字地震仪组成的流动地震台阵,利用台阵记录的宽频带远震P波波形数据和非线性接收函数反演方法获得了延怀盆地内0-80km深度范围的地壳、上地幔S波速度结构.利用计算机三维彩色剖分显示技术研究了台阵下地壳、上地幔速度结构的横向非均匀变化。结果表明,研究区域内的地壳厚度为40km左右,壳幔界面有4km左右的上下起伏.地表沉积盖层在延庆盆地中心附近厚度约1km,而在向盆地外围延伸的方向上相对变薄.研究区域内上地壳S波速度结构较复杂,而下地壳与上地幔则相对比较均匀.其上地壳最突出的特点是在10km深度附近有明显的S波低速层.在延庆盆地下方,它延伸到6-20km的深度范围.在延庆盆地南侧,该低速层有从西往东逐渐减弱的趋势.研究区域内的地震基本上都发生在延庆盆地下方上地壳低速体外围.据此推断,延庆盆地及其临近区域内的地震活动与该区域地壳内的热状态有密切关系.  相似文献   

17.
云南西部地壳深部结构特征   总被引:10,自引:3,他引:7       下载免费PDF全文
在云南西部,穿过红河、小江断裂带完成了一条长360 km、呈北东向的深地震宽角反射/折射剖面.通过对该测线的观测资料进行一维、二维模拟解释,得到了沿剖面的二维地壳速度模型.研究结果显示,沿测线Moho界面埋深横线变化大,其西南侧Moho埋深约35 km,东北侧Moho最大埋深可达43 km.沿剖面从西南到北东方向,地壳平均P波速度从5.9 km/s逐渐增加到6.13 km/s,但显著低于全球大陆平均值.结合以往的接收函数和面波联合反演结果,我们推算沿测线从西南到东北,其下方地壳泊松比介于0.23~0.25之间.剖面西南侧上地壳具有异常低的P波速度和泊松比,暗示其下方上地壳以α-相长英质组分为主;而剖面东北上地壳相对较高的P波速度和泊松比则暗示其物质组成以花岗岩-花岗闪长岩为主.研究区下地壳的P波速度和泊松比分别介于6.25~6.75 km/s和0.24~0.26 km/s之间,暗示其上部组成以花岗岩相的片麻岩为主,而下部组成则以角闪石类岩石为主.红河断裂两侧地壳速度显著不同,从浅到深其速度差异逐渐变弱,但红河断裂两侧地壳厚度变化较大.而小江断裂下方两侧地壳速度和地壳厚度变化并没有红河断裂那么明显.  相似文献   

18.
Crustal seismic tomography in the Calabrian Arc region, south Italy   总被引:1,自引:0,他引:1  
27,646 P- and 15,025 S-wave readings obtained from 2238 earthquakes and 84 artificial sources were used to perform tomographic inversion of P velocity and VP/VS ratio in the crust of Calabrian Arc by Thurber’s inversion algorithm. For this investigation a seismic database with more than twelve-thousand events was built, including all local earthquake data recorded between 1978 and 2001 at all stations of the national and local networks in south Italy. Spread Function computations and checkerboard and restore tests proved higher accuracy of velocity estimates in the upper 40 km beneath Calabrian Arc compared to previous investigations in the same area. The obtained three-dimensional velocity model furnished remarkable improvement of hypocenter locations of the global earthquake dataset (RMS reduction of 38% respect to 1D locations) and greater accuracy in the definition of microplates and tectonic units in the study region. Velocity domains evidenced by our tomography correspond to tectonic units locally identified with geological methods by previous investigators and allow us to better detail their shape and geometry at depth. In particular, at a depth of about 20 km beneath Calabria we detected the deep contact between the overthrusting Tyrrhenian crust and the subducting Ionian slab, improving the accuracy of the current subduction model of the Calabrian Arc region.  相似文献   

19.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

20.
A temporary seismological network of broadband three-component stations has been deployed N–S to investigate the crust and upper mantle structure across the Ordos Block and the Yinshan Mountains. P wave receiver functions reveal the Moho depth to be about 41 km beneath the central Ordos Block and down to 45 km beneath the northern Ordos Block, a slight uplifting to 42–43 km beneath the Hetao Graben, increasing to 47–48 km beneath the Yinshan Mountains and then decreasing to 44 km beneath the northern Yinshan Mountains along the profile. In the Ordos Block, the crustal Vp/Vs ratio (about 1.80) south to the Hetao Graben differs from that (about 1.75) beneath the center Ordos Block. The crustal Vp/Vs ratio is significantly lower (about 1.65–1.70) beneath the Yinshan Mountains. The P wave receiver function migration imaging suggests relatively flat discontinuities at 410 and 660 km, indicating the lack of a strong thermal anomaly beneath this profile at these depths, and a low S wave velocity anomaly in the upper mantle beneath the Hetao Graben. We suggest that the low S wave velocity anomaly may be attributable to heat and that the thermal softening advances the evolution of the Hetao Graben, while the lower-crustal ductile flows transfer from the Hetao Graben to the northern Ordos Block, resulting in crustal thickening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号