首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A possibility of obtaining steadier long-term estimates of modal values of the long-term runoff as compared with the technique based on using the system of ordinary differential equations for initial statistical moments is demonstrated using the approximation of multidimensional probability model of river runoff formation with first-order partial differential equations.  相似文献   

2.
Turbulence in the Stable Boundary Layer at Higher Richardson Numbers   总被引:1,自引:1,他引:0  
We present some algebraic and numerical simulations of the stable boundary layer. We also discuss the problem of the existence of a critical Richardson number (Ri), beyond which the turbulence is suppressed. We compare the results of a second-order algebraic model with those of a third-order numerical model and, to this purpose, numerical simulations of a wind-tunnel flow, which is characterized by various Richardson numbers, were performed. As far as the second-order model is concerned, solutions, for the Richardson number greater than any critical value, can be obtained by modifying the time scales of the second-order equation pressure correlation terms in order to account for a buoyancy damping factor. We show that using a third-order model allows the same results (no critical Richardson number) to be obtained without modifications to the time scales. It is suggested that the non-locality, accounted for by the third-order moments, could allow the turbulence to persist also for Ri > 1.  相似文献   

3.
We present a second-order turbulence model for the cloudy planetary boundary layer (PBL), which includes a statistical scheme of the sub-grid scale condensation. The model contains prognostic equations for the turbulent kinetic energy, total water, and liquid water temperature, the latter two being assumed to be conservative variables. Using these conservative thermodynamic variables the condensation process is formulated as a function of the departure of the total water from saturation and its variance. The computation of the variance requires second moment correlations which are modelled through the parameterization of the third-order moments using a convective mass-flux formulation. The inclusion of these third moments and new assumptions on heat flux transport lead to a nonlocal turbulence scheme with counter-gradient effects. The final form for the heat flux turns out to be a linearized version of a previously established result. For the statistical cloud formulation, a linear combination of a Gaussian and a positively skewed distribution function is used with a modified liquid water flux expression to account fornon-Gaussian behaviour.The effect of the turbulence scheme on the boundary-layer cloud structure is discussed and the performance of the model is tested by comparing it against the large eddy simulation (LES) of the undisturbed period of the Atlantic Stratocumulus Transition Experiment (ASTEX). The model is able to produce both mean and turbulent quantities that are in reasonable agreement with the LES output of ASTEX.  相似文献   

4.
Multiscale asymptotics are used to derive three systems of equations connecting the planetary geostrophic (PG) equations for gyre-scale flow to a quasigeostrophic (QG) equation set for mesoscale eddies. Pedlosky (1984), following similar analysis, found eddy buoyancy fluxes to have only a small effect on the large-scale flow; however, numerical simulations disagree. While the impact of eddies is relatively small in most regions, in keeping with Pedlosky’s result, eddies have a significant effect on the mean flow in the vicinity of strong, narrow currents.First, the multiple-scales analysis of Pedlosky is reviewed and amplified. Novel results of this analysis include new multiple-scales models connecting large-scale PG equations to sets of QG eddy equations. However, only introducing anisotropic scaling of the large-scale coordinates allows us to derive a model with strong two-way coupling between the QG eddies and the PG mean flow. This finding reconciles the analysis with simulations, viz. that strong two-way coupling is observed in the vicinity of anisotropic features of the mean flow like boundary currents and jets. The relevant coupling terms are shown to be eddy buoyancy fluxes. Using the Gent-McWilliams parameterization to approximate these fluxes allows solution of the PG equations with closed tracer fluxes in a closed domain, which is not possible without mesoscale eddy (or other small-scale) effects. The boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed, which is the same result found by Fox-Kemper and Ferrari (2009) in a reduced gravity layer.  相似文献   

5.
We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections.  相似文献   

6.
马淑萍  冉令坤  曹洁 《大气科学》2021,45(5):1127-1145
利用WRF模式对2018年11月30日伊犁河谷和天山北坡强降雪过程进行数值模拟,并分析复杂地形强降雪过程垂直速度和垂直动能变化机制。研究表明,冷锋过境造成地表气压升高,干空气气柱质量增大,从而导致垂直气压梯度力和干空气气柱浮力发生变化,进而引起垂直运动发生发展。垂直速度局地时间变化主要取决于扰动垂直气压梯度力、水物质拖曳力和扰动干空气浮力。在天山北坡,气流过山时,迎风坡的扰动垂直气压梯度力较大,扰动干空气浮力较小,二者合力促进上升运动;在背风坡,扰动垂直气压梯度力和扰动空气浮力形成向下的合力,产生下沉加速度,导致背风坡下沉大风。扰动垂直气压梯度力做功和扰动干空气浮力做功情况基本相反,背风坡扰动垂直气压梯度力和综合强迫做功项抑制垂直动能,扰动干空气浮力和水物质拖曳力做功项增强垂直动能。此外,扰动垂直气压梯度力和扰动干空气浮力做功项主要出现在中低层,水物质拖曳力做功项主要位于低层,平缓地形处的综合强迫做功明显小于地形复杂处。  相似文献   

7.
During the last two decades, different scalings for convective boundary layer (CBL) turbulence have been proposed. For the shear-free regime, Deardorff (1970) introduced convective velocity and temperature scales based on the surface potential temperature flux,Q s , the buoyancy parameter, , and the time-dependent boundary-layer depth,h. Wyngaard (1983) has proposed decomposition of turbulence into two components, bottom-up (b) and top-down (t), the former characterized byQ s , the latter, by the potential temperature flux due to entrainment,Q h . Sorbjan (1988) has devised height-dependent velocity and temperature scales for both b- and t-components of turbulence.Incorporating velocity shear, the well known similarity theory of Monin and Obukhov (1954) has been developed for the atmospheric surface layer. Zilitinkevich (1971, 1973) and Betchov and Yaglom (1971) have elaborated this theory with the aid of directional dimensional analysis for a particular case when different statistical moments of turbulence can be alternatively attributed as being of either convective or mechanical origin.In the present paper, we attempt to create a bridge between the two approaches pointed out above. A new scaling is proposed on the basis of, first, decomposition of statistical moments of turbulence into convective (c), mechanical (m) and covariance (c&m) contributions using directional dimensional analysis and, second, decomposition of these contributions into bottom-up and top-down components using height-dependent velocity and temperature scales. In addition to the statistical problem, the scaling suggests a new approach of determination of mean temperature and velocity profiles with the aid of the budget equations for the mean square fluctuations.Notation ATL alternative turbulence layer - CBL convective boundary layer - CML convective and mechanical layer - FCL free convection layer - MTL mechanical turbulence layer  相似文献   

8.
Abstract

We look at the development of the first plumes that emerge from a convectively unstable boundary layer by modelling the process as the instability of a fluid with a time‐dependent mean density field. The fluid is semi‐infinite, rotating, dissipative ‐ characterized by the ratio of its viscosity to thermal diffusivity (Prandtl number Pr = ν/κ) ‐ and initially homogeneous. A constant destabilizing heat flux is applied at the boundary and the stability of the evolving density field is investigated both mathematically and in laboratory experiments.

Using a “natural convective” scaling, we show that the behaviour of the non‐dimensional governing equations depends on Pr and the parameter γ = f(ν/B)1/2, where f is the Coriolis parameter, and B is the applied buoyancy flux. For the ocean, γ ≈ 0.1, whilst for the atmosphere γ ≈ 0.01. In the absence of rotation, the behaviour of the differential equations is independent of B, depending only on Pr. The boundary‐layer Rayleigh number (Rabl) is also independent of B. We show that Rabl, evaluated at the onset of rapid vertical motion, depends on the form of the perturbation.

Due to the time‐dependence of the mean density field, analytic instability analysis is difficult, so we use a numerical technique. The governing equations are transformed to a stretched vertical coordinate and their stability investigated for a particular form of perturbation function. The model predictions are, for the ocean: instability time ~2–4 h, density difference ~0.002–0.013 kg m‐3, boundary‐layer thickness ~50–75 m and horizontal scale ~200–300 m; and for the atmosphere: instability time ~10 min, temperature difference ~2.0–3.0°C, boundary‐layer thickness ~400–500 m and horizontal scale ~1.5–2.0 km.

Laboratory experiments are performed to compare with the numerical predictions. The time development of the mean field closely matches the assumed analytic form. Furthermore, the model predictions of the instability timescale agree well with the laboratory measurements. This supports the other predictions of the model, such as the lengthscales and buoyancy anomaly.  相似文献   

9.
基于EEMD的黄河中上游夏季降水预报方法的研究   总被引:3,自引:0,他引:3  
王文  任冉  李耀辉 《气象科学》2014,34(3):261-266
传统的统计方法难以很好的对气候系统这一集非线性、非平稳性为一身的多层次系统进行处理。因此集层次化处理和平稳化处理的集合正交经验模态分解技术(EEMD)的提出,为解决上述问题提供了有效的途径。本文选取黄河中上游24个气象观测站的逐月降水资料,结合组合预报和集合预报思路,基于EEMD建立了统计预报模型。其中对降水序列中的高频部分进行了二次平稳化处理,实现对2008—2013年6—8月的降水预报,并用预报评分检测预报效果。结果表明:EEMD模型对黄河中上游夏季降水有着较强的预报能力,在该区域与气候模式和传统的统计方法相比具有更高的精度和更好的应用前景。  相似文献   

10.
The method of moments is used to predict the spatial and temporal dispersion of a cloud of particles released in the atmosphere. The moment equations involve an eddy diffusivity, and a turbulence parameterization is developed to obtain the tensor eddy diffusivity which takes into account the anisotropy of the flow. The parabolic equations for the moments of the distribution are solved by a finite element method. The differences between the data requirements for Lagrangian statistical models and those for eddy diffusivity models are discussed in relation to the comparison of model predictions with observations.  相似文献   

11.
沈新勇  沙莎  李小凡 《大气科学》2018,42(5):1109-1118
本文是讨论梅雨锋暴雨过程中多尺度能量相互作用问题的开始部分。为了分析梅雨锋暴雨过程中的多尺度能量相互作用,从z坐标系中的运动方程和热力学方程出发,把基本物理量分成大尺度背景场(>2000 km)、α中尺度(200~2000 km)和β中小尺度系统(< 200 km)分量,利用滞弹性近似,推导了大尺度背景场、α中尺度和β中小尺度系统三个尺度的动能方程和位能方程。能量方程中包含了各尺度动能之间的转换、位能之间的转换以及动能和位能之间的转换。动能方程主要包括各尺度动能之间转换项、动能输送项、水平气压梯度力做功项、垂直方向扰动气压梯度力做功项、浮力做功项、地转偏向力分量做功项以及摩擦力做功项。位能方程主要包括各尺度位能之间转换项、位能输送项、浮力做功项以及非绝热加热做功项。其中浮力做功项为位能和动能之间的能量转换项,是暴雨发生发展过程中比较关键的能量转换项。关于将能量方程用于梅雨锋暴雨过程中并且诊断能量相互作用影响暴雨发展和消亡过程的物理机制等问题,将在以后的研究中给出。  相似文献   

12.
Chatwin and Sullivan (1990) proposed simple results for the relationships between moments of scalar fluctuations in self-similar turbulent shear flows. They showed these relationships to be well satisfied by observations from a range of experiments. Here their theory is extended to the skewness, kurtosis and higher order equivalents. It is shown that the relationships between these normalised moments are parameter-free, and are identical to those for zero molecular diffusion. Experimental observations are presented which show a remarkable degree of collapse when these normalised moments are plotted against each other. The agreement with the theoretical results is reasonably good, and better than for some other standard statistical distributions which are commonly applied to such observations. This is true not only for the concentration, but also for generalised doses. It is concluded that the simple theory provides a satisfactory basis for a model of both the concentration and of dose. Furthermore, the results suggest that the concentration and the dose can be modelled through a perturbation to a two-state model.  相似文献   

13.
14.
基于EMD方法的观测数据信息提取与预测研究   总被引:5,自引:1,他引:4  
用统计方法作月、季尺度的短期气候乃至年际尺度的长期气候预测是当前气候预测业务的主要依据,在短时间内这种情况仍然不可能彻底改变。虽然数值预报模式的预测能力达到了7 d的时效,不过要积分到月、季尺度并实现短期气候预测还面临着重重困难。其根本原因是气候系统的混沌分量和非线性/非平稳性等因素在起作用。而现有气候预测的统计方法(主要包括经验统计、数理统计和物理统计等方法)的数学基础却忽略了这些特点,这是因为以现有的科学水平人们不得不假设时间序列是线性和平稳的。实际气候观测序列普遍具有层次性、非线性和非平稳性,这给建立预测方法带来了极大困难。文中构建了一个新的预测模型,即首先利用经验模态分解(em-pirical mode decomposition,EMD)方法将气候序列作平稳化处理,得到一系列平稳分量-本征模函数(intrinsic modefunction,IMF);其次,利用均生函数(mean generate function,MGF)模型获得各分量的初次预测值;最后,在最优子集回归(optimal subset regression,OSR)模型的基础上,通过直接或逐步拟合一部分预测值,构建两种预测方案达到提高预测能力的目的。典型气候序列的预测试验结果表明,具有平稳化的IMF分量,尤其是特征IMF分量有较高的可预测性,它对原序列趋势的预测有重要指示意义。大力开展气候系统机理和气候层次的研究,并建立相应的气候模式是未来发展趋势。该文是这方面的一个初步尝试,相信该模型能为气候预测(评估)开辟一条新的有效途径。  相似文献   

15.
With the purpose of studying the upper part of the ocean, the shallow water equations (in a `reduced gravity' setting) have been extended in the last decades by allowing for horizontal and temporal variations of the buoyancy field ϑ, while keeping it as well as the velocity field u as depth-independent. In spite of the widespread use of this `slab' model, there has been neither a discussion on the range of validity of the system nor an explanation of points such as the existence of peculiar zero-frequency normal modes, the nature of the instability of a uniform u flow, and the lack of explicit vertical shear associated with horizontal density gradients. These questions are addressed here through the development of a subinertial model with more vertical resolution, i.e., one where the buoyancy ϑ varies linearly with depth. This model describes satisfactorily the problem of baroclinic instability with a free boundary, even for short perturbations and large interface slopes. An enhancement of the instability is found when the planetary β effect is compensated with the topographic one, due to the slope of the free boundary, allowing for a `resonance' of the equivalent barotropic and first baroclinic modes. Other low-frequency models, for which buoyancy stratification does not play a dynamical role, are invalid for short perturbations and have spurious terms in their energy-like integral of motion.  相似文献   

16.
Non-stationarity is a common feature in geophysical flows, though it still remains an open question on how the non-stationarity of flow affects its statistical structure. Using the telegraph approximation (TA) method, we quantified how non-stationarity in the measured atmospheric turbulent vertical velocity time series affects its clustering properties—one of the two main components of intermittency in turbulence. We compare different TA results between stationary and non-stationary atmospheric turbulent vertical velocity records, and find that the non-stationary data possess different cluster and intermittency exponents from stationary data. The inter-pulse period of the non-stationary records takes a near power-law distribution while the inter-pulse period of the stationary records exhibits a stretched exponential distribution. These results suggest that non-stationarity of the underlying processes can affect the statistical structure of turbulence, especially the clustering properties.  相似文献   

17.
Statistical tools based on the maximal overlap discrete wavelet transform (MODWT) are reviewed, and then applied to a dataset of aircraft observations of the atmospheric boundary layer from the tropical eastern Pacific, which includes quasi-stationary and non-stationary segments. The wavelet methods provide decompositions of variances and covariances, e.g. fluxes, between time scales that effectively describe a broadband process like atmospheric turbulence. Easily understood statistical confidence bounds are discussed and applied to these scale decompositions, and results are compared to Fourier methods for quasi-stationary turbulence. The least asymmetric LA(8) wavelet filter yields coefficients that exhibit better uncorrelatedness across scales than the Haar filter and is better suited for decomposition of broadband turbulent signals. An application to a non-stationary segment of our dataset, namely vertical profiles of the turbulent dissipation rate, highlights the flexibility of wavelet methods.  相似文献   

18.
Motivated primarily by its application to understanding tropical-cyclone intensification and maintenance, we re-examine the concept of buoyancy in rapidly rotating vortices, distinguishing between the buoyancy of the symmetric balanced vortex or system buoyancy, and the local buoyancy associated with cloud dynamics. The conventional definition of buoyancy is contrasted with a generalized form applicable to a vortex, which has a radial as well as a vertical component. If, for the special case of axisymmetric motions, the balanced density and pressure distribution of a rapidly rotating vortex are used as the reference state, the buoyancy field then characterizes the unbalanced density perturbations, i.e. the local buoyancy. We show how to determine such a reference state without approximation.The generation of the toroidal circulation of a vortex, which is necessary for vortex amplification, is characterized in the vorticity equation by the baroclinicity vector. This vector depends, inter-alia, on the horizontal (or radial) gradient of buoyancy evaluated along isobaric surfaces. We show that for a tropical-cyclone-scale vortex, the buoyancy so calculated is significantly different from that calculated at constant height or on surfaces of constant σ (σ = (p  p*)/(ps  p*), where p is the actual pressure, p* some reference pressure and ps is the surface pressure). Since many tropical-cyclone models are formulated using σ-coordinates, we examine the calculation of buoyancy on σ-surfaces and derive an expression for the baroclinicity vector in σ-coordinates. The baroclinic forcing term in the azimuthal vorticity equation for an axisymmetric vortex is shown to be approximately equal to the azimuthal component of the curl of the generalized buoyancy. A scale analysis indicates that the vertical gradient of the radial component of generalized buoyancy makes a comparatively small contribution to the generation of toroidal vorticity in a tropical cyclone, but may be important in tornadoes and possibly also in dust devils.We derive also a form of the Sawyer–Eliassen equation from which the toroidal (or secondary) circulation of a balanced vortex may be determined. The equation is shown to be the time derivative of the toroidal vorticity equation in which the time rate-of-change of the material derivative of potential toroidal vorticity is set to zero. In analogy with the general case, the diabatic forcing term in the Sawyer–Eliassen equation is shown to be approximately equal to the time rate-of-change of the azimuthal component of the curl of generalized buoyancy.Finally, we discuss the generation of buoyancy in tropical cyclones and contrast the definitions of buoyancy that have been used in recent studies of tropical cyclones. We emphasize the non-uniqueness of the buoyancy force, which depends on the choice of a reference density and pressure, and note that different, but equivalent interpretations of the flow dynamics may be expected to arise if different reference quantities are chosen.  相似文献   

19.
We present a comparative study of the conventional stationary wind speed model and a newly proposed non-stationary wind speed model using field measurements. The concept of, and the differences between, the two wind models are briefly reviewed. Wind data recorded by a field measurement system for wind turbulence parameters (FMS-WTP) of 1-year duration are analyzed using the two wind models. Comparisons were made between the wind characteristics obtained from the two models, including hourly mean wind speed, turbulence intensity, the wind spectrum, integral length scale, root coherence function and probability density function. The effects of wind types (monsoon or typhoon), statistical properties (stationary or non-stationary), and surface roughness (open-sea fetch or overland fetch) on wind characteristics are discussed. The comparative study demonstrates that the non-stationary wind model appears to be more appropriate than the conventional stationary wind speed model for characterizing turbulent winds of one-hour duration over complex terrain.  相似文献   

20.
采用NCEP/NCAR再分析资料,分别将一日4次、日平均、月平均资料作为输入进行计算,分析了浮力频率在不同尺度下的时间变化及空间变化,发现浮力频率的分布与纬度和高度、海洋和陆地、山脉和地形分布等有关。一般认为,浮力频率取决于上下层的温度差。通过对其表达式的推演,指出浮力频率除了与上下层温度差有关外,也与气温本身有关,是两者的非线性函数。针对不同时间尺度及空间的采样样本,研究了气温和垂直温差在浮力频率时空变化中的相对重要性。结果表明,对浮力频率的某些时空变化,在一些区域,气温本身的变化也很重要,其影响甚至能超过上下层温度差的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号