首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
本文利用全球重力位模型、胶州市地面重力观测数据、胶州市GPS水准数据和数字地面模型(DTM),采用组合法应用移去-恢复技术计算剩余大地水准面,并与地球位模型计算的高程异常进行拟合,得到该地区重力似大地水准面,再和布测、计算得到的GPS/水准所构成的几何大地水准面拟合,利用多项式拟合完成系统改正,获得最终的大地水准面结果及相关的精度信息。  相似文献   

2.
为了得到我国某陆海交界区厘米级精度的区域(似)大地水准面,利用43个高精度GPS/水准点和1 045个实测重力点数据对EGM96,WDM94和GFZ计算的局部重力(似)大地水准面进行了比较与评价。结果表明,在该测区用移去-恢复法确定重力(似)大地水准面时,EGM96应该是首选参考重力场模型。该测区处在陆海交界处,海域无GPS/水准数据。经比较发现,采用距离倒数加权平均法将该区重力似大地水准面拟合于GPS/水准数据比在大范围使用的多项式法效果更好。采用该方法计算的测区(似)大地水准面精度优于3cm。  相似文献   

3.
陆海交界区域厘米级精度似大地水准面的确定   总被引:1,自引:0,他引:1  
为了得到我国某陆海交界区厘米级精度的区域(似)大地水准面,利用43个高精度GPS/水准点和1045个实测重力点数据对EGM96,WDM94和GFZ计算的局部重力(似)大地水准面进行了比较与评价。结果表明,在该测区用移去.恢复法确定重力(似)大地水准面时,EGM96应该是首选参考重力场模型。该测区处在陆海交界处,海域无GPS/水准数据。经比较发现,采用距离倒数加权平均法将该区重力似大地水准面拟合于GPS/水准数据比在大范围使用的多项式法效果更好。采用该方法计算的测区(似)大地水准面精度优于3cm。  相似文献   

4.
深圳市1 km高分辨率厘米级高精度大地水准面的确定   总被引:56,自引:1,他引:56  
利用65个精度优于2 cm的GPS水准数据、5 213个实测重力点数据、100 m分辨率的数字地形模型和WDM94地球重力场模型,采用移去-恢复技术计算了深圳市1 km分辨率的大地水准面模型.将该模型大地水准面高与由29个GPS水准得到的大地水准面高进行比较,其差值的标准差为±1.4 cm.  相似文献   

5.
为计算深圳精密重力大地水准面,利用62个高精度GPS水准点和4871个实测重力点数据对EGM96,WDM94和GPM98CR全球重力场模型表示深圳局部重力场进行了比较与评价。结果表明,由上述3个重力场模型计算的大地水准面高和重力异常与实测值之间存在明显的系统偏差,当采用GPS水准数据尽可能消除系统偏差以后,大地水准面高的精度得到显著提高,若应用移去-恢复技术确定深圳高精度大地水准面,则WDM94应该是首选的参考重力场模型。  相似文献   

6.
中国似大地水准面   总被引:12,自引:2,他引:12  
采用移去-恢复技术,利用我国高分辨率DTM和重力资料推算我国大陆重力大地水准面;然后再和我国GPS水准所构成的高程异常控制网拟合,推算具有分米级精度,15′×15′分辨率的我国大陆大地水准面.利用全国地壳运动监测网络的80余个高精度GPS水准点进行外部检核,检核结果证实和原设计精度完全一致即该大陆大地水准面的绝对精度,在东经120°以东,高于±0.3 m,在东经120°以西,北纬36°以北,±0.4 m, 36°以南,±(0.4~0.6) m.利用卫星测高数据计算垂线偏差,反解我国海域大地水准面.为了检核,由测高垂线偏差反演为重力异常,与海上万余点船测重力值进行了外部检核;同时将上述反演的重力异常推算大地水准面,与直接解得的相应结果进行比较作为内部检核.由重力和GPS水准数据推算的上述大陆大地水准面,和主要由卫星测高数据确定的海洋大地水准面,二者之间一般都存在以系统误差为主的拼接差.顾及这一现象和结合我国在陆海大地水准面拼接区重力资料稀疏的实际,研究提出了扩展拼接技术,即在沿海选取部分陆海毗邻的局部地区,在这局部地区内,陆地用实测平均重力格网数据,海洋用测高平均重力格网数据,统一推算陆海局部重力大地水准面.然后利用这一局部大地水准面的陆地部分和已经GPS水准校正的陆地大地水准面进行拟合.最后将拟合参数校正中国全部海域的测高重力大地水准面,而保持陆地部分大地水准面不变,以最大限度的削弱拼接点和测高海洋大地水准面的系统误差.  相似文献   

7.
中国新一代高精度、高分辨率大地水准面的研究和实施   总被引:13,自引:2,他引:13  
采用移去恢复技术,利用我国高分辨率DTM和重力资料推算我国大陆重力大地水准面;然后再和我国GPS水准所构成的高程异常控制网拟合,推算了具有dm级精度、15′×15′分辨率的我国大陆大地水准面。利用全国地壳运动监测网络的80余个高精度GPS水准点进行外部检核,检核结果证实和原设计精度完全一致,即该大陆大地水准面的绝对精度,在东经102°以东高于±0.3m,在东经102°以西、北纬36°以北为±0.4m,36°以南为±(0.4~0.6)m。利用卫星测高数据计算垂线偏差,反解我国海域大地水准面。为了检核,由测高垂线偏差反演为重力异常,与海上万余点船测重力值进行了外部检核;同时用上述反演的重力异常推算大地水准面,与直接解得的相应结果进行比较作为内部检核。由重力和GPS水准数据推算的上述大陆大地水准面,和主要由卫星测高数据确定的海洋大地水准面,二者之间一般都存在以系统误差为主的拼接差。顾及这一现象并结合我国在陆海大地水准面拼接区重力资料稀疏的实际,研究提出了扩展拼接技术,即在沿海选取部分陆海毗邻的局部地区,在这局部地区内,陆地用实测平均重力格网数据,海洋用测高平均重力格网数据,统一推算这陆海局部重力大地水准面。然后利用这一局部大地水准面的陆地部分和已经用GPS水准校正的陆地大地水准面进行拟合。最后用拟合参数校正中国全部海域的测高重力大地水准面,从而保持陆地部分大地水准面不变,最大限度地削弱拼接点和测高海洋大地水准面的系统误差。  相似文献   

8.
我国海域大地水准面与大陆大地水准面的拼接研究   总被引:2,自引:0,他引:2  
由重力和GPS水准数据确定的陆地大地水准面和主要由卫星测高数据确定的海洋大地水准面 ,两者之间一般都存在以系统误差为主的拼接差 ,分析了产生这一现象的主要原因。顾及这一现象 ,并结合我国在陆海大地水准面拼接区重力资料稀疏的实际 ,提出了扩展拼接技术。以国家GPS水准网确定的 (似 )大地水准面作控制 ,对陆海重力大地水准面作拟合校正 ,得到我国校正的陆海统一的重力大地水准面  相似文献   

9.
赫林  李建成  褚永海 《测绘学报》2017,46(7):815-823
GRACE、GOCE卫星重力计划的实施,对确定高精度重力场模型具有重要贡献。联合GRACE、GOCE卫星数据建立的重力场模型和我国均匀分布的649个GPS/水准数据可以确定我国高程基准重力位,但我国高程基准对应的参考面为似大地水准面,是非等位面,将似大地水准面转化为大地水准面后确定的大地水准面重力位为62 636 854.395 3m~2s~(-2),为提高高阶项对确定大地水准面的贡献,利用高分辨率重力场模型EGM2008扩展GRACE/GOCE模型至2190阶,同时将重力场模型和GPS/水准数据统一到同一参考框架和潮汐系统,最后利用扩展后的模型确定的我国大地水准面重力位为62 636 852.751 8m~2s~(-2)。其中组合模型TIM_R4+EGM2008确定的我国85高程基准重力位值62 636 852.704 5m~2s~(-2)精度最高。重力场模型截断误差对确定我国大地水准面的影响约16cm,潮汐系统影响约4~6cm。  相似文献   

10.
应用GPS水准与重力数据联合解算大地水准面   总被引:1,自引:0,他引:1  
GPS水准大地水准面与重力大地水准面之差不仅由基准不同引起,而且也包含重力与GPS水准观测值的误差。建立了这两个水准面之差与基准转换参数、重力和GPS水准观测值的残差之间的关系,并基于最小二乘准则解算了基准转换参数和重力与GPS水准观测值的残差,即计算转换参数及重力与GPS观测值的改正。尤其当GPS水准精度远高于重力水准面时,联合解算模型可固定GPS水准大地水准面,只对重力观测值进行改正。  相似文献   

11.
The main objective of this study is to improve the geoid by GPS/leveling data in Egypt. Comparisons of the gravimetric geoid with GPS/leveling data have been performed. On the basis of a gravimetric geoid fitted to GPS/leveling by the least square method, a smoothed geoid was obtained. A high-resolution geoid in Egypt was computed with a 2.5′×2.5′ grid by combining the data set of 2600 original point gravity values, 20″×30″ resolution Digital Terrain Model (DTM) grid and the spherical harmonic model EGM96. The method of computation involved the strict evaluation of the Stokes integral with 1D-FFT. The standard deviation of the difference between the gravimetric and the GPS/leveling geoid heights is ±0.47 m. The standard deviation after fitting of the gravimetric geoid to the GPS/leveling points is better than ±13 cm. In the future we will try to improve our geoid results in Egypt by increasing the density of gravimetric coverage.  相似文献   

12.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

13.
利用了双输入单输出法,融合处理了我国某地区的重力异常和地形资料两类数据,结合WDM94地球重力场模型和63个高精度GPS水准数据,计算了该区域的似大地水准面。  相似文献   

14.
结合我国重力和地形资料及国内外较优的重力场模型,研制了适合我国重力场特征的360阶重力场模型WDM94,建立了中国新一代包括全部陆海国土的dm级(似)大地水准面CQG2000,建立了中国以GPS/水准为基础的高程异常控制网,利用海洋卫星测高数据进行我国海洋大地水准面的计算、我国陆地重力(似)大地水准面的研制厦我国陆海(似)大地水准面的拼接;研制了江苏省、海南省、深圳市、大连市、南京市及南水北调西线工程具有cm级精度的省市地区(似)大地水准面模型;结合GPS技术和高精度(似)大地水准面模型,研制了GPS测图软硬件一体化系统。  相似文献   

15.
一种有效的区域似大地水准面精度检测方法   总被引:4,自引:1,他引:3  
廖超明  王龙波  覃允森 《测绘科学》2008,33(6):53-54,41
利用大地水准面逼近严密理论Molodenskii级数解,结合GPS、水准、重力和地形资料精化区域似大地水准面,其精度已从分米级向厘米级、高分辨率方向发展。如何客观、高效地评价区域似大地水准面精度是本文研究的主要目的。作者以广西似大地水准面精度检测为例子,给出了一种综合考虑GPS/水准检测点GPS大地高和水准测量误差的区域似大地水准面精度检测方法。利用覆盖广西境内的446个C级GPS控制网和航控GPS控制网GPS/水准检测点,点间距约25km,采用加权平均法计算广西似大地水准面外符合检测精度为±0.041m。  相似文献   

16.
高阶地球重力场模型的评价及其优选   总被引:1,自引:0,他引:1  
采用"移去-恢复"技术确定大地水准面,需要一个全球重力场模型作为参考场。本文采用基于模糊集合理论的最大隶属度原则,通过某试验区的33个GPS水准点的实测大地水准面差距与模型大地水准面差距的比较分析,从国际重力场服务提供的EGM96、EIGEN-CG01C、EIGEN-CG03C、GFZ93A、GFZ96、OSU91A、PGM2000A等七个高阶全球重力场模型中,选择OSU91A作为该地区最优的参考重力场模型。  相似文献   

17.
研究了将陆地重力似大地水准面与GPS水;住似大地水准面拟合的处理方法推广到海洋的问题.首先从理论上证明了当存在海面地形.则海洋大地水准面与似大地水准面不重合.导出了在海洋上大地水;住面差距与高程异常之间差值的公式.由此给出了求定平均海面相对于区域高程基准的正常高以及测高似大地水准面的计算公式。由于测高平均海面与GPS大地高有相近的精度.提出了将海洋重力似大地水准面与区域测高似大地水准面拟合的处理方法.并利用当前最新的海面地形模型和测高平均海面模型做了数值估计。  相似文献   

18.
Three Geoid Slope Validation Surveys were planned by the National Geodetic Survey for validating geoid improvement gained by incorporating airborne gravity data collected by the “Gravity for the Redefinition of the American Vertical Datum” (GRAV-D) project in flat, medium and rough topographic areas, respectively. The first survey GSVS11 over a flat topographic area in Texas confirmed that a 1-cm differential accuracy geoid over baseline lengths between 0.4 and 320 km is achievable with GRAV-D data included (Smith et al. in J Geod 87:885–907, 2013). The second survey, Geoid Slope Validation Survey 2014 (GSVS14) took place in Iowa in an area with moderate topography but significant gravity variation. Two sets of geoidal heights were computed from GPS/leveling data and observed astrogeodetic deflections of the vertical at 204 GSVS14 official marks. They agree with each other at a \({\pm }1.2\,\, \hbox {cm}\) level, which attests to the high quality of the GSVS14 data. In total, four geoid models were computed. Three models combined the GOCO03/5S satellite gravity model with terrestrial and GRAV-D gravity with different strategies. The fourth model, called xGEOID15A, had no airborne gravity data and served as the benchmark to quantify the contribution of GRAV-D to the geoid improvement. The comparisons show that each model agrees with the GPS/leveling geoid height by 1.5 cm in mark-by-mark comparisons. In differential comparisons, all geoid models have a predicted accuracy of 1–2 cm at baseline lengths from 1.6 to 247 km. The contribution of GRAV-D is not apparent due to a 9-cm slope in the western 50-km section of the traverse for all gravimetric geoid models, and it was determined that the slopes have been caused by a 5 mGal bias in the terrestrial gravity data. If that western 50-km section of the testing line is excluded in the comparisons, then the improvement with GRAV-D is clearly evident. In that case, 1-cm differential accuracy on baselines of any length is achieved with the GRAV-D-enhanced geoid models and exhibits a clear improvement over the geoid models without GRAV-D data. GSVS14 confirmed that the geoid differential accuracies are in the 1–2 cm range at various baseline lengths. The accuracy increases to 1 cm with GRAV-D gravity when the west 50 km line is not included. The data collected by the surveys have high accuracy and have the potential to be used for validation of other geodetic techniques, e.g., the chronometric leveling. To reach the 1-cm height differences of the GSVS data, a clock with frequency accuracy of \(10^{-18}\) is required. Using the GSVS data, the accuracy of ellipsoidal height differences can also be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号