首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

3.
4.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Tracer investigations were combined with a geographical information system (GIS) analysis of the 31 km2 Girnock catchment (Cairngorm Mountains, Scotland) in order to understand hydrological functioning by identifying dominant runoff sources and estimating mean residence times. The catchment has a complex geology, soil cover and topography. Gran alkalinity was used to demonstrate that catchment geology has a dominant influence on baseflow chemistry, but flow paths originating in acidic horizons in the upper soil profiles controlled stormflow alkalinity. Chemically based hydrograph separations at the catchment scale indicated that ~30% of annual runoff was derived from groundwater sources. Similar contributions (23–36%) were estimated for virtually all major sub‐basins. δ18O of precipitation (mean: ? 9·4‰; range: ? 16·1 to ? 5·0‰) and stream waters (mean: ? 9·1‰; range: ? 11·6 to ? 7·4‰) were used to assess mean catchment and sub‐basin residence times, which were in the order ~4–6 months. GIS analysis showed that these tracer‐based diagnostic features of catchment functioning were consistent with the landscape organization of the catchment. Soil and HOST (Hydrology of Soil Type) maps indicated that the catchment and individual sub‐basins were dominated by hydrologically responsive soils, such as peats (Histosol), peaty gleys (Histic Gleysols) and rankers (Umbric Leptosols and Histosols). Soil cover (in combination with a topographic index) predicted extensive areas of saturation that probably expand during hydrological events, thus providing a high degree of hydrological connectivity between catchment hillslopes and stream channel network. This was validated by aerial photographic interpretation and groundtruthing. These characteristics of hydrological functioning (i.e. dominance of responsive hydrological pathways and short residence times) dictate that the catchment is sensitive to land use change impacts on the quality and quantity of streamflows. It is suggested that such conceptualization of hydrological functioning using tracer‐validated GIS analysis can play an important role in the sustainable management of river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
An analysis of the hydrological effects of vegetation changes in the Columbia River basin over the last century was performed using two land cover scenarios. The first was a reconstruction of historical land cover vegetation, c. 1900, as estimated by the federal Interior Columbia Basin Ecosystem Management Project (ICBEMP). The second was current land cover as estimated from remote sensing data for 1990. Simulations were performed using the variable infiltration capacity (VIC) hydrological model, applied at one‐quarter degree spatial resolution (approximately 500 km2 grid cell area) using hydrometeorological data for a 10 year period starting in 1979, and the 1900 and current vegetation scenarios. The model represents surface hydrological fluxes and state variables, including snow accumulation and ablation, evapotranspiration, soil moisture and runoff production. Simulated daily hydrographs of naturalized streamflow (reservoir effects removed) were aggregated to monthly totals and compared for nine selected sub‐basins. The results show that, hydrologically, the most important vegetation‐related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime maximum snow accumulations, and hence snow available for runoff during the spring melt season, have tended to increase, and evapotranspiration has decreased. The reverse has occurred in areas where fire suppression has tended to increase vegetation maturity, although the logging effect appears to dominate for most of the sub‐basins evaluated. Predicted streamflow changes were largest in the Mica and Corralin sub‐basins in the northern and eastern headwaters region; in the Priest Rapids sub‐basin, which drains the east slopes of the Cascade Mountains; and in the Ice Harbor sub‐basin, which receives flows primarily from the Salmon and Clearwater Rivers of Idaho and western Montana. For these sub‐basins, annual average increases in runoff ranged from 4·2 to 10·7% and decreases in evapotranspiration ranged from 3·1 to 12·1%. In comparison with previous studies of individual, smaller sized watersheds, the modelling approach used in this study provides predictions of hydrological fluxes that are spatially continuous throughout the interior Columbia River basin. It thus provides a broad‐scale framework for assessing the vulnerability of watersheds to altered streamflow regimes attributable to changes in land cover that occur over large geographical areas and long time‐frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Steep mountainous areas account for 70% of all river catchments in Japan. To predict river discharge for the mountainous catchments, many studies have applied distributed hydrological models based on a kinematic wave approximation with surface and subsurface flow components (DHM-KWSS). These models reproduce observed river discharge of catchments in Japan well; however, the applicability of a DHM-KWSS to catchments with different geographical and climatic conditions has not been sufficiently examined. This research applied a DHM-KWSS to two river basins that have different climatic conditions from basins in Japan to examine the transferability of the DHM-KWSS model structure. Our results show that the DHM-KWSS model structure explained flow regimes for a wet river basin as well as a large flood event in an arid basin; however, it was unable to explain long-term flow regimes for the arid basin case study.  相似文献   

10.
This paper presents a methodology for hydrograph separation in mountain watersheds, which aims at identifying flow sources among ungauged headwater sub‐catchments through a combination of observed streamflow and data on natural tracers including isotope and dissolved solids. Daily summer and bi‐daily spring season water samples obtained at the outlet of the Juncal River Basin in the Andes of Central Chile were analysed for all major ions as well as stable water isotopes, δ18O and δD. Additionally, various samples from rain, snow, surface streams and exfiltrating subsurface water (springs) were sampled throughout the catchment. A principal component analysis was performed in order to address cross‐correlation in the tracer dataset, reduce the dimensionality of the problem and uncover patterns of variability. Potential sources were identified in a two‐component U‐space that explains 94% of the observed tracer variability at the catchment outlet. Hydrograph separation was performed through an Informative‐Bayesian model. Our results indicate that the Juncal Norte Glacier headwater sub‐catchment contributed at least 50% of summer flows at the Juncal River Basin outlet during the 2011–2012 water year (a hydrologically dry period in the Region), even though it accounts for only 27% of the basin area. Our study confirms the value of combining solute and isotope information for estimating source contributions in complex hydrologic systems, and provides insights regarding experimental design in high‐elevation semi‐arid catchments. The findings of this study can be useful for evaluating modelling studies of the hydrological consequences of the rapid decrease in glacier cover observed in this region, by providing insights into the origin of river water in basins with little hydrometeorological information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   

12.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

13.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

14.
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall–runoff relationship of the 202 km2 Teba river catchment, located in semi‐arid south‐eastern Spain. The period of available data (1976–1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years. The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes. The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum. Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The recession of bomb tritium in river discharge of large basins indicates a contribution of slowly moving water. For an appropriate interpretation it is necessary to consider different runoff components (e.g. direct runoff and ground water components) and varying residence times of tritium in these components. The spatially distributed catchment model (tracer aided catchment model, distributed; TACD) and a tritium balance model (TRIBIL) were combined to model process‐based tritium balances in a large German river basin (Weser 46 240 km2) and seven embedded sub‐basins. The hydrological model (monthly time step, 2 × 2 km2) estimated the three major runoff components: direct runoff, fast‐moving and slow‐moving ground water for the period of 1950 to 1999. The model incorporated topography, land use, geomorphology, geology and hydro‐meteorological data. The results for the different basins indicated a contribution of direct runoff of 30–50% and varying amounts for fast and slow ground water components. Combining these results with the TRIBIL model allowed us to estimate the residence time of the components. Mean residence times of 8 to 14 years were found for the fast ground water component, 21 to 93 years for the slow ground water component and 14 to 50 years for an overall mean residence time within these basins. Balance calculations for the Weser basin indicate an over‐estimation of loss of tritium through evapotranspiration (more than 60%) and decay (10%). About 28% were carried in stream‐flow where direct runoff contributed about 12% and ground water runoff 13% in relation to precipitation input over the studied 50‐year period. Neighbouring basins and nuclear power plants contributed about 1% each over this time period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near‐surface processes is relevant to issues of runoff generation, groundwater–surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3‐D physics‐based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub‐surface flow and transport simulator. A recent investigation of sub‐surface flow within this experimental hillslope has generated important knowledge of threshold rainfall‐runoff response and its relation to patterns of transient water table development. This work has identified components of the 3‐D sub‐surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub‐surface stormflow. Here, we test the ability of a 3‐D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall‐runoff response and internal transient sub‐surface stormflow dynamics. We also provide a transparent illustration of physics‐based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field‐based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub‐surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In the present study, a semi‐distributed hydrological model soil and water assessment tool (SWAT) has been employed for the Ken basin of Central India to predict the water balance. The entire basin was divided into ten sub basins comprising 107 hydrological response units on the basis of unique slope, soil and land cover classes using SWAT model. Sensitivity analysis of SWAT model was performed to examine the critical input variables of the study area. For Ken basin, curve number, available water capacity, soil depth, soil evaporation compensation factor and threshold depth of water in the shallow aquifer (GWQ_MN) were found to be the most sensitive parameters. Yearly and monthly calibration (1985–1996) and validation (1997–2009) were performed using the observed discharge data of the Banda site in the Ken basin. Performance evaluation of the model was carried out using coefficient of determination, Nash–Sutcliffe efficiency, root mean square error‐observations standard deviation ratio, percent bias and index of agreement criterion. It was found that SWAT model can be successfully applied for hydrological evaluation of the Ken basin, India. The water balance analysis was carried out to evaluate water balance of the Ken basin for 25 years (1985–2009). The water balance exhibited that the average annual rainfall in the Ken basin is about 1132 mm. In this, about 23% flows out as surface run‐off, 4% as groundwater flow and about 73% as evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号