首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Modified Moving Particle method in Porous media (MMPP) is introduced in this study for simulating a flow interaction with porous structures. By making use of the sub-particle scale (SPS) turbulence model, a unified set of equations are introduced for the entire computational domain and a proper boundary treatment is suggested at the interfaces between fluid and the porous media. Similar to the Incompressible Smoothed Particle Hydrodynamic (ISPH) method, a robust two-step semi-implicit scheme is utilized to satisfy the incompressibility criterion. By means of the introduced model, different flow regimes through multi-layered porous structures with arbitrary shapes can be simulated and there is no need to implement calibration factors.The developed MMPP model is then validated via simulating the experiments of Liu et al. (1999) i.e. linear and turbulent flows through porous dams and the experiments of Sakakiyama and Liu (2001) i.e. wave overtopping on a caisson breakwater protected by multi layered porous materials. Good agreements between numerical and laboratory data present the ability of the introduced model in simulating various flow regimes through multi-layered porous structures. It is concluded that the turbulent flow is an important issue particularly at the interface between the free fluid and porous media and consequently, the accuracy of the previous Lagrangian models that were based on neglecting the turbulence effect can be improved significantly by means of the present model. In addition, to satisfy the continuity criteria in the SPH models, it is necessary to modify density of particles in accordance with their porosity.  相似文献   

2.
为了研究波浪与抛石潜堤相互作用过程中大自由表面变形和堤内渗流等强非线性紊流运动问题,利用改进的MPS法,建立了模拟波浪与抛石潜堤相互作用的MPS法数值计算模型。模型将抛石潜堤假定为均质多孔介质,采用Drew的二相流运动方程描述多孔介质内外的流体运动;通过在动量方程中增加非线性阻力项,并引入亚粒子尺度紊流模型,模拟波浪与可渗结构物相互作用过程中的紊流运动。选取“U”型管中多孔介质内渗流过程和孤立波与可渗潜堤相互作用两个典型的渗流问题,通过将数值计算结果与理论解和实测值的对比分析,对所提出的MPS法紊流渗流模型的模拟精度进行验证。结果表明:基于改进的MPS法构建的垂向二维紊流渗流模型可以很好地再现“U”型管中多孔介质内渗流以及波浪作用下可渗潜堤内外的复杂流场,显著缓解流-固界面处的压力震荡与粒子分布不均匀问题,实现了较高的模拟精度。  相似文献   

3.
This paper presents the application of the Improved Meshless Local Petrov Galerkin method with Rankine source (Sriram and Ma, 2012) Sriram and Ma (2012) for wave interaction with porous structure model. The mathematical model is based on a unified governing equation that incorporates both pure fluid and porous region. The porous flow model is based on the empirical resistance coefficients. The interface between the pure fluid and porous region is numerically treated using background nodes having the porosity information and interpolated over the particle using simplified finite difference interpolation method. The model is validated using the available experimental results for wave damping over the permeable bed. The developed model is used to analyse the different shape of the seawall such as flaring shaped seawall, recurve wall and vertical wall. Then the validated model is used for analysing the overtopping amount due to the effect of porous layer in-front of the different sea wall profile. Numerical expression for overtopping amount has been provided for the different configurations from the numerical model.  相似文献   

4.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

5.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

6.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

7.
A numerical wave flume is used to investigate the discharge characteristics of combined overflow and wave overtopping of impermeable seawalls. The numerical procedure computes solutions to the Reynolds-averaged Navier–Stokes equations and includes the generation of an irregular train of waves, the simulation of wave breaking and interaction with a sloping, impermeable wall. The numerical model is first tested against published experimental observations, approximate analytical solutions and empirical design formulae for the cases of pure overflow and pure overtopping. A sequence of numerical experiments simulating combined overflow and overtopping are described. The results are used to determine empirical discharge formulae of the form used in current practice.  相似文献   

8.
《Coastal Engineering》2006,53(9):723-735
The paper presents an incompressible Smoothed Particle Hydrodynamics (SPH) model to investigate the wave overtopping of coastal structures. The SPH method is a grid-less Lagrangian approach which is capable of tracking the large deformations of the free surface with good accuracy. The incompressible algorithm of the model is implemented by enforcing the constant particle density in the pressure projection. The SPH model is employed to reproduce a transient wave overtopping over a fixed horizontal deck and the regular/irregular waves overtopping of a sloping seawall. The computations are validated against the experimental and numerical data and a good agreement is observed. The SPH modelling is shown to provide a promising tool to predict the overtopping characteristics of different waves. The present model is expected to be of practical purpose if further improvement in the spatial resolution and CPU time can be adequately made.  相似文献   

9.
A numerical model is developed by combining a porous flow model and a two-phase flow model to simulate wave transformation in porous structure and hydraulic performances of a composite type low-crest seawall. The structure consists of a wide submerged reef, a porous terrace at the top and an impermeable rear wall. The porous flow model is based on the extended Navier-Stokes equations for wave motion in porous media and kε turbulence equations. The two-phase flow model combines the water domain with the air zone of finite thickness above water surface. A unique solution domain is established by satisfying kinematic boundary condition at the interface of air and water. The free surface advection of water wave is modeled by the volume of fluid method with newly developed fluid advection algorithm. Comparison of computed and measured wave properties shows reasonably good agreement. The influence of terrace width and structure porosity is investigated based on numerical results. It is concluded that there exist optimum value of terrace width and porosity that can maximize hydraulic performances. The velocity distributions inside and in front of the structure are also investigated.  相似文献   

10.
准确确定越浪量对于斜坡堤设计有重要意义。利用格子Boltzmann方法(LBM),并采用主动吸收式速度入口造波、出流边界消波、VOF方法追踪自由表面以及静态Smagorinsky模型模拟紊流运动,建立二维数值波浪水槽,对光滑斜坡堤上规则波与不规则波越浪进行数值模拟。模拟结果与试验值及其他数值模型结果比较表明,二维LBM数值波浪水槽具有模拟斜坡堤越浪的能力,但对于破碎较为剧烈的越浪过程模拟,该模型还存在一定的不足,未来可从提高自由表面模型精度等方面进一步改善其性能。  相似文献   

11.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

12.
《Coastal Engineering》2004,51(10):991-1020
This paper describes the capability of a numerical model named COrnell BReaking waves And Structures (COBRAS) [Lin, P., Liu, P.L.-F., 1998. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 359, 239–264; Liu, P.L.-F., Lin, P., Chang, K.A., Sakakiyama, T., 1999. Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal and Ocean Engineering 125, 322–330, Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., Sakakiyama, T., 2000. A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions. Proc. Coastal Structures '99, 169–174] based on the Reynolds Averaged Navier–Stokes (RANS) equations to simulate the most relevant hydrodynamic near-field processes that take place in the interaction between waves and low-crested breakwaters. The model considers wave reflection, transmission, overtopping and breaking due to transient nonlinear waves including turbulence in the fluid domain and in the permeable regions for any kind of geometry and number of layers. Small-scale laboratory tests were conducted in order to validate the model, with different wave conditions and breakwater configurations. In the present study, regular waves of different heights and periods impinging on a wide-crested structure are considered. Three different water depths were tested in order to examine the influence of the structure freeboard. The experimental set-up includes a flow recirculation system aimed at preventing water piling-up at the lee of the breakwater due to overtopping. The applicability and validity of the model are examined by comparing the results of the numerical computations with experimental data. The model is proved to simulate with a high degree of agreement all the studied magnitudes, free surface displacement, pressure inside the porous structure and velocity field. The results obtained show that this model represents a substantial improvement in the numerical modelling of low-crested structures (LCS) since it includes many processes neglected previously by existing models. The information provided by the model can be useful to analyse structure functionality, structure stability, scour and many other hydrodynamic processes of interest.  相似文献   

13.
应用经CSPM法和黎曼解修正后的光滑粒子流体动力学(SPH)方法,建立了主动吸收无反射数值波浪水槽,研究波浪作用下多孔介质结构的水动力特性。流体运动控制方程采用N-S方程,多孔渗水结构内流体的运动控制方程考虑渗流力的影响。数值计算结果给出了水槽内不同位置测点的波面历时曲线和越浪量随时间变化曲线,并同试验结果和Philip Liu的数值计算结果进行了比较。并对一个波浪周期内斜坡堤多孔介质结构内外的速度场和压力分布进行了讨论分析。计算分析表明,数值计算波面较Philip Liu的计算结果与试验结果吻合更好。说明应用SPH方法建立的二维数学模型能够较好地模拟破碎波在多孔渗水斜坡上的爬坡和越浪。  相似文献   

14.
15.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

16.
Numerical analysis of wave overtopping of rubble mound breakwaters   总被引:1,自引:0,他引:1  
The paper describes the results of a two-dimensional (2-D) numerical modelling investigation of the functionality of rubble mound breakwaters with special attention focused on wave overtopping processes. The model, COBRAS-UC, is a new version of the COBRAS (Cornell Breaking Waves and Structures) based on the Volume Averaged Reynolds Average Navier–Stokes (VARANS) equations and uses a Volume of Fluid Technique (VOF) method to capture the free surface. The nature of the model equations and solving technique provides a means to simulate wave reflection, run-up, wave breaking on the slope, transmission through rubble mounds, overtopping and agitation at the protected side due to the combined effect of wave transmission and overtopping. Also, two-dimensional experimental studies are carried out to investigate the performance of the model. The computations of the free surface and pressure time series and spectra under regular and irregular waves, are compared with the experimental data reaching a very good agreement. The model is also used to reproduce instantaneous and average wave overtopping discharge. Comparisons with existing semi-empirical formulae and experimental data show a very good performance. The present model is expected to become in the near future an excellent tool for practical applications.  相似文献   

17.
Ming Zhao  Liang Cheng 《Ocean Engineering》2010,37(14-15):1357-1366
A finite element model is established for simulating flow in and out a porous media. The extended Darcy equation inside the porous media and the Navier–Stokes equations in the fluid are coupled via the continuity condition at the interface between the two media. The model is firstly validated against the analytical and the numerical results available in literature. Then it is applied to simulate flow past a circular cylinder covered by a porous layer. The effect of the porous layer on the reduction of lift coefficient is investigated numerically. It is found that the lift reduction can be achieved by properly choosing the porous material. However, the amount of reduction greatly depends on the Reynolds number, the permeability and the Forchheimer coefficient.  相似文献   

18.
This paper describes the development of a numerical model for wave overtopping on seadikes. The model is based on the flux-conservative form of the nonlinear shallow water equations (NLSW) solved with a high order total variation diminishing (TVD), Roe-type scheme. The goal is to reliably predict the hydrodynamics of wave overtopping on the dike crest and along the inner slope, necessary for the breach modelling of seadikes. Besides the mean overtopping rate, the capability of simulating individual overtopping events is also required. It is shown theoretically that the effect of wave breaking through the drastic motion of surface rollers in the surfzone is not sufficiently described by the conventional nonlinear shallow water equations, neglecting wave setup from the mean water level and thus markedly reducing the model predictive capacity for wave overtopping. This is significantly improved by including an additional source term associated with the roller energy dissipation in the depth-averaged momentum equation. The developed model has been validated against four existing laboratory datasets of wave overtopping on dikes. The first two sets are to validate the roller term performance in improving the model prediction of wave overtopping of breaking waves. The last two sets are to test the model performance under more complex but realistic hydraulic and slope geometric conditions. The results confirm the merit of the supplemented roller term and also demonstrate that the model is robust and reliable for the prediction of wave overtopping on seadikes.  相似文献   

19.
波浪与大孔隙多孔介质相互作用的耦合数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了波浪与大孔隙多孔介质相互作用的耦合数学模型,波浪域的控制方程为雷诺时均方程和k-ε紊流模型。对于计算域的入射波采用推板式造波,它可以是线性波、椭圆余弦波和孤立波。采用PLIC-VOF法追踪波浪自由表面。对于多孔介质内的孔隙流场采用非线性Forchheimer方程,两区域共享连续方程,最后导出的波浪域与孔隙流域的压力修正方程具有完全相同的形式,利用这个方程能够同时而不是分别求解波浪场和孔隙流场,避免了在内部边界上给定匹配条件,实现了波浪场与孔隙流场的同步耦合。波浪与粗颗粒海床、平底床面上抛石潜堤及斜坡上抛石潜堤相互作用的验证计算结果表明该模型可用于研究波浪与大孔隙多孔介质相互作用的问题。  相似文献   

20.
Spatial distribution of wave overtopping water behind coastal structures   总被引:1,自引:0,他引:1  
Spatial distribution of random wave overtopping water behind coastal structures was investigated using a numerical model based on Reynolds-Averaged Navier-Stokes solver (RANS) and Volume of Fluid (VOF) surface capturing scheme (RANS-VOF). The computed spatial distributions of wave overtopping water behind the structure agree well with the measurements by Pullen et al (2008) for a vertical wall and Lykke Andersen and Burcharth (2006) for a 1:2 sea dike. A semi-analytical model was derived to relate spatial distribution of wave overtopping water behind coastal structures to landward ground level, velocity and layer thickness on the crest. This semi-analytical model agrees reasonably well with both numerical model results and measurements close to coastal structures. Our numerical model results suggest that the proportion of wave overtopping water passing a landward location increases with a seaward slope when it is less than 1:3 and decreases with a seaward slope when it gets steeper. The proportion of wave overtopping water passing a landward location increases with landward ground level and overtopping discharge. It also increases with the product of incident wave height and wavelength, but decreases with increasing relative structure freeboard and crest width. We also found that the extent of hazard area due to wave overtopping is significantly reduced by using a permeable structure crown. Findings in this study will enable engineers to establish the extent of hazard zones due to wave overtopping behind coastal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号