首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytic solution to the two-body problem with a specific drag model is obtained. The model treats drag as a force proportional to the vector velocity and inversely proportional to the square of the distance to the center of attraction. The solution is expressed in terms of known functions and is of a simple and compact form. The time-of-flight is expressed as a quadrature in the ‘true anomaly’.  相似文献   

2.
Unified analytical solutions to two-body problems with drag   总被引:3,自引:0,他引:3  
The two-body problem with a generalized Stokes drag is discussed. The drag force is proportional to the product of the velocity vector and the inverse square of the distance. The generalization consists of allowing two different proportionality constants for the radial and the transverse components of the force. Under the 'generalized Robertson transformation', the equation of the orbit takes the form of the Lommel equation and admits solutions in terms of Bessel and Lommel functions. The exact, analytical solutions for this type of drag reveal a paradoxical effect of increasing eccentricity for all trajectories. The Poynting–Robertson drag and Poynting–Plummer–Danby problems are discussed as particular cases of the general solution.  相似文献   

3.
Equations describing planar motion along a constant elliptical orbit in non-central force field are derived in a simple way and discussed. The angular moment along the elliptical orbit is not a constant of motion. The problem appears to be related to the problem of planar motion with drag force. Relations with related works are discussed. In presence of drag force, conditions for the force field to be derived from the gradient of a function are discussed, and -elation of this function with the potential function is indicated.  相似文献   

4.
In this paper, we consider a satellite orbiting in a Manev gravitational potential under the influence of an atmospheric drag force that varies with the square of velocity. Using an exponential atmosphere that varies with the orbital altitude of the satellite, we examine a circular orbit scenario. In particular, we derive expressions for the change in satellite radial distance as a function of the drag force parameters and obtain numerical results. The Manev potential is an alternative to the Newtonian potential that has a wide variety of applications, in astronomy, astrophysics, space dynamics, classical physics, mechanics, and even atomic physics.  相似文献   

5.
The applicability of advanced numerical methods for the solution of the orbit determination problem is studied.The dynamics of the observed object is written as a system of integral equations. This system is solved numerically by representing the components of the force function as linear combinations of B-splines and by applying the multigrid technique. In an outer loop the orbit determination problem is solved using Newton's method.The method is suitable for both preliminary orbit determination and orbit improvement.Most of the programming and part of the analysis was done by G. Zwier, in partial fulfilment of the requirements for obtaining the degree of master in applied mathematics at the Twente University of Technology.  相似文献   

6.
在不同的轨道预报场景中, 使用的动力学模型也不同. 例如, 在低轨空间碎片的预报中大气阻力是十分重要的摄动力, 而到了中高轨, 大气阻力就可以忽略不计. 如何为不同轨道类型的空间碎片选择最优(满足精度要求下的最简)动力学模型还没有系统、详尽的研究. 将对不同精度需求、不同轨道类型下的大批量轨道进行预报, 通过比较不同动力学模型下的预报结果, 给出各种预报场景的最优动力学模型建议. 可以为不同轨道类型的空间碎片在轨道预报时选择基准动力学模型提供参考或标准.  相似文献   

7.
This paper deals with the generalized problem of motion of a system of a finite number of bodies (material points).We suppose here that every point of the system acts on another one with a force (attractive or repulsive) directed along the straight line connecting these two points, and proportional to the product of their masses and a certain function of time, mutual distance and its derivatives of the first and second order (Duboshin, 1970).The laws of forces are different for different pairs of points and, generally speaking, the validity of the third axiom of dynamics (law of action and reaction) is not assumed in advance.With these general assumptions we find the conditions for the laws of the forces under which the problem admits the first integrals, analogous to the classic integrals of the many-body problem with the Newton's law of attraction.It is shown furthermore, that in this generalized problem it is possible to obtain an equation, analogous to the classic equation of Lagrange-Jacobi and deduce the conditions of stability or instability of the system in Lagrange's sense.The results obtained may be applied for the investigation of motion in some isolated stellar systems, where the laws of mechanics may be different from the laws in our solar system.  相似文献   

8.
The aero-gravity assist maneuver is here proposed as a tool to improve the efficiency of the gravity assist as, thanks to the interaction with the planetary atmospheres, the angular deviation of the velocity vector can be definitely increased. Even though the drag reduces the spacecraft velocity, the overall Δυ gain could be remarkable whenever a high lift-to-drag vehicle is supposed to fly. Earlier studies offer simplified approaches according to both the dynamics modeling and the atmospheric trajectory constraints. In this paper a 3D dynamical model is adopted and a more realistic L/D performance for the hypersonic vehicle is assumed. Some relevant aspects related to the multidisciplinary design have been considered such as heating rates and structural loads bounding. Comparisons between in and out of plane maneuvering have been performed by assuming, as control variables, either the angle of attack or the bank angle, respectively. The optimal control problem has been solved by selecting a direct method approach. The dynamics has been transcribed into a set of non-linear constraints and the arising non-linear programming problem has been solved with a sequential quadratic programming solver. To gain the global optimum convergence the initial guess has been supplied by solving the same problem by a direct shooting technique and a genetic optimizer.  相似文献   

9.
The axisymmetric satellite problem including radiation pressure and drag is treated. The equations of motion of the satellite are derived. The energy-like and Laplace-like invariants of motion have been derived for a general drag force function of the polar angle, and the Laplace-like invariant is used to find the orbit equation in the case of a spherical satellite. Then using the small parameter, the orbit of the satellite is determined for an axisymmetric satellite.  相似文献   

10.
Weakly nonlinear MHD stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.  相似文献   

11.
In this article we collect several results related to the classical problem of two-dimensional motion of a particle in the field of a central force proportional to a real power of the distancer. At first we generalize Whittaker's result of the fourteen powers ofr which lead to intergrability with elliptic functions. We enumerate six more general potentials, including Whittaker's fourteen potentials as particular cases (Sections 2 and 3).Next, we study the stability of the circular solutions, which are the singular solutions of the problem, in Whittaker's terminology. The stability index is computed as a function of the exponentn and its properties are explained, especially in terms of bifurcations with other families of ordinary periodic solutions (Sections 4, 5 and 7). In Section 6, the detailed solution of the inverse cube force problem is given in terms of an auxiliary variable which is similar to the eccentric anomaly of the Kepler problem.Finally, it is shown that the stable singular circular solutions of the central force problem generalize to stable singular elliptic solutions of the two-fixed-center problem. The stability and the bifurcations with other families of periodic solutions of the two-fixed-center problem are also described.  相似文献   

12.
A criterion for the linear stability of the equilibrium points in the perturbed restricted three-body problem is given. This criterion is related only to the coefficients of the characteristic equation of the tangent map of an equilibrium point, and this is convenient to use. With this criterion, we have discussed the linear stability of the equilibrium points in the Robe problem under the perturbation of a drag force, derived the linearly stable region of the equilibrium point in the perturbed Robe's problem with the drag given by Hallen et al., and improved as well the results obtained by Giordano et al.  相似文献   

13.
The theory of broad-absorption-line (BAL) QSOs is worked out on the basis of the radiation hydrodynamics equation solution for the two-phase media of active galactic nuclei. We suppose that the BAL QSO physics depends on some 'hidden' AGN parameters, such as the mass and size of the compact stellar system. We therefore approach this problem in the more general framework of the 'interacting subsystems theory', which includes these parameters. We compare the results of the numerical model calculations with the observed spectra and show that the BAL QSOs (and the radio-quiet quasars as well) contain massive compact stellar kernels in their central regions. We show that the line-locking effect is determined by the radiation pressure, and is also favoured by the drag force of the hot gas acting on the line-absorbing clouds.
We derive some general conclusions about the physics of AGN. In particular, we show that the radio-quiet versus radio-loud dichotomy can be explained by using two types of hot gas outstreams in quasars.  相似文献   

14.
This paper studies libration dynamics and stability of deorbiting nano-satellites by short and bare electrodynamic tethers. A critical aspect of satellite deorbit by an electrodynamic tether is to maintain the tether aligned with the local vertical and stable while subjected to external perturbations. The dynamics of electrodynamic tether system in deorbit application is divided into the orbital motion of the center of system’s mass and the tether libration motion relative to that center. Major space environmental perturbations including the current-induced electrodynamic force, atmospheric drag, oblateness effect of the Earth, irregularity of geomagnetic field, variable plasma density, solar radiation pressure, and lunisolar gravitational attractions are considered in the dynamic analysis. Quantitative analyses are provided in order to characterize the order of the perturbative torques during the deorbit process. A single index is derived from the libration energy to stabilize the libration motion by regulating the current in the tether through simple on-off switching. Numerical results show that the libration dynamics of an electrodynamic tether has significant impacts on the deorbit process and the electrodynamic tether cannot effectively deorbit satellites without libration stability control. The proposed current regulation strategy is simple and very effective in stabilizing libration motion of an electrodynamic tether.  相似文献   

15.
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.  相似文献   

16.
Based on the equations of planar motion with drag used in point dynamics, a simple derivation is presented that shows how a constant Keplerian (elliptical) orbit can be obtained with a non-central force field and variable angular momentum.  相似文献   

17.
The well-known problem of motion in a central field integrable in quadratures is considered. The force function of the problem depends only on the particle distance to the chosen coordinate origin. In the general case of an arbitrary central force, a rigorous analytical solution of the problem cannot be obtained due to the complexity of the integrals. In this paper we propose a semi-analytical method of constructing an approximate solution for the case where the distance varies in a limited range that allows the time dependences of the polar coordinates to be obtained using elliptic functions and integrals. As an example, we consider the model problems of the perturbed motion of hypothetical Jovian and lunar equatorial satellites as well as the problem of the motion of a single star in the principal plane of a galaxy. The methodical accuracy has been estimated by a comparison with the numerical solution.  相似文献   

18.
We develop a new perturbative framework for studying the r modes of rotating superfluid neutron stars. Our analysis accounts for the centrifugal deformation of the star, and considers the two-fluid dynamics at linear order in the perturbed velocities. Our main focus is on a simple model system where the total density profile is that of an   n = 1  polytrope. We derive a partially analytic solution for the superfluid analogue of the classical r mode. This solution is used to analyse the relevance of the vortex-mediated mutual friction damping, confirming that this dissipation mechanism is unlikely to suppress the gravitational-wave-driven instability in rapidly spinning superfluid neutron stars. Our calculation of the superfluid r modes is significantly simpler than previous approaches, because it decouples the r mode from all other inertial modes of the system. This leads to the results being clearer, but it also means that we cannot comment on the relevance of potential avoided crossings (and associated 'resonances') that may occur for particular parameter values. Our analysis of the mutual friction damping differs from previous studies in two important ways. First, we incorporate realistic pairing gaps which means that the regions of superfluidity in the star's core vary with temperature. Secondly, we allow the mutual friction parameters to take the whole range of permissible values rather than focusing on a particular mechanism. Thus, we consider not only the weak drag regime, but also the strong drag regime where the fluid dynamics are significantly different.  相似文献   

19.
Vršnak  Bojan 《Solar physics》2001,202(1):173-189
Decelerated motion of 12 coronal eruptions is studied. It is found that the measured decelerations and deceleration rates depend on the events' plane-of-sky velocities and heights. The dependence of deceleration on the velocity is described better by a quadratic function then by linear fit. Results are interpreted in terms of a viscous drag. An empirical relation expressing the decrease of the drag effectiveness with the projected height is established. The interplay between the Lorentz force, viscous drag, and gravity is discussed. Several examples are considered to illustrate the relative contributions of these forces under various circumstances.  相似文献   

20.
《Planetary and Space Science》1999,47(8-9):935-949
An analytical model of the innermost gas–dust coma region is proposed. The kinetic Knudsen layer adjacent to the surface of the cometary nucleus, where the initially non-equilibrium velocity distribution function of gas molecules relaxes to Maxwell equilibrium distribution function and, as a result, the macro-characteristics of gas and dust flows vary several-fold, is considered. The gas phase model is based on the equations for mass, momentum and energy flux conservation, and is a natural development of the Anisimov, 1968 and Cercignani, 1981 approaches. The analytical relations between the characteristics of the gas flow on the boundaries of the non-equilibrium layer and the characteristics of the returning gas flow adsorbed by the surface are determined. These values form a consistent basis both for hydrodynamic models of the inner coma and for jet force models. Three particular models are presented: (1) sublimation of a polyatomic one-component gas; (2) sublimation of a two-component polyatomic gas mixture, in both cases from a plane surface; and (3) sublimation of water ice through a porous dust mantle. We conclude that the characteristics of the gas flow emerging from the Knudsen layer over a porous dust mantle is not very sensitive to the structure of the mantle.We also treat the expansion of dust into the coma, concentrating on the interaction between a non-equilibrium gas flow and a test particle. The dynamics of a grain of idealized shape is explored by using several simplifying assumptions for the variation of the drag force. The velocity of a particle at the exterior boundary of the Knudsen layer is thus estimated. Examining various model behaviours of the drag force inside the Knudsen layer, we show that the dust velocity is not sensitive to these variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号