首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
The development and the applications of an active controlled viscous damping device with amplifying braces are described. The system of the dampers, defined as active viscous damping system (AVDS), connected to an amplifying brace (AB) is presented herein. Instantaneous control theory with velocity and acceleration feedback is used to obtain the control forces at each time step during an excitation. Control of the damping forces is possible due to the mechanical structure of the proposed AVDS, and the connection to the AB. The proposed system can be efficiently used to enhance the damping of a structure without modifying its stiffness. The added damping forces can be adjusted in a wide range. The efficiency of the presented system is demonstrated by a numerical simulation of a seven‐storey building subjected to earthquakes. The simulation shows a considerable reduction of control forces required for control to the AVDS with AB, compared to the same system without AB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
This study uses a semi‐active viscous damper with three different control laws to reshape the structural hysteresis loop and mitigate structural response, referred to as 1–4, 1–3 and 2–4 devices, respectively. The 1–4 control law provides damping in all four quadrants of the force‐displacement graph (it behaves like a standard viscous damper), the 1–3 control law provides resisting forces only in the first and third quadrants, and the 2–4 control law provides damping in the second and fourth quadrants. This paper first outlines the linear single degree of freedom structural performance when the three types of semi‐active viscous dampers are applied. The results show that simultaneous reduction in both displacement and base‐shear demand is only available with the semi‐active 2–4 device. To enable guidelines for adding a 2–4 device into the design procedure, damping reduction factors (RFξs) are developed, as they play an important role and provide a means of linking devices to design procedures. Three methods are presented to obtain RFξ and equivalent viscous damping of a structure with a 2–4 semi‐active viscous damper. In the first method, the relationship between RFξ and the damping of a semi‐active structure can be obtained by calculating the area under the force‐deformation diagram. The second and third method modified the Eurocode8 formula of RFξ and smoothed results from analysis, respectively. Finally, a simple method is proposed to incorporate the design or retrofit of structures with simple, robust and reliable 2–4 semi‐active viscous dampers using standard design approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

4.
大底盘多塔楼结构的混合隔震控制   总被引:2,自引:0,他引:2  
结合某实际工程,针对大底盘多塔楼结构提出混合隔震的控制策略,即对大底盘上的一栋或多栋塔楼采用隔震技术,并在隔震层附设一定数量的被动、主动或半主动的减震控制装置。建立了这种大底盘多塔楼结构混合隔震控制体系的运动方程,方程中各塔楼与下部结构及隔震层之间的刚度解耦,并考虑了隔震层的非线性。研究中比较了被动非线性粘滞阻尼器,半主动变孔隙阻尼器与理想主动控制时的减震控制效果。结果表明,这种混合隔震体系可以有效地减小上部塔楼与下部结构的地震反应,提高大底盘多塔楼结构的抗震安全性,取得明显的经济和社会效益。半主动变孔隙阻尼器可以极好地追踪理想主动控制力,取得与理想主动控制相近的减震控制效果。被动非线性粘滞阻尼器也能取得较好的减震效果,且易于维护,经济性较好,从工程应用的角度来看更为现实可行,具有较好的应用推广价值。  相似文献   

5.
The aim of this paper was to propose a design guideline for using visco‐elastic dampers for the control of building structures subjected to earthquake loading as well as suspension roof structures subjected to wind loading. The active control algorithm was used to calculate the control forces. Based on the single‐mode approach the control forces were transformed to the forces which visco‐elastic dampers can provide. Application of the method to the design of the building structure with passive damping devices in the bracing system and to the suspension roof with dampers was studied. Through the application of optimal control theory a systematic design procedure to implement dampers in structures is proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a theoretical study of a predictive active control system used to improve the response of multi‐degree‐of‐freedom (MDOF) structures to earthquakes. As an example a building frame equipped with electrorheological (ER) dampers is considered. The aim of the design is to find a combination of forces that are produced by the ER dampers in order to obtain an optimal structural response. The mechanical response of ER fluid dampers is regulated by an electric field. Linear auto‐regressive model with exogenous input (ARX) is used to predict the displacements and the velocities of the frame in order to overcome the time‐delay problem in the control system. The control forces in the ER devices are calculated at every time step by the optimal control theory (OCT) according to the values of the displacements and of the velocities that are predicted at the next time step at each storey of the structure. A numerical analysis of a seven‐storey ER damped structure is presented as an example. It shows a significant improvement of the structural response when the predictive active control system is applied compared to that of an uncontrolled structure or that of a structure with controlled damping forces with time delay. The structure's displacements and velocities that were used to obtain the optimal control forces were predicted according to an ‘occurring’ earthquake by the ARX model (predictive control). The response was similar to that of the structure with control forces that were calculated from a ‘known’ complete history of the earthquake's displacement and velocity values, and were applied without delay (instantaneous control). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
高烈度地震对铁路桥梁安全造成巨大隐患,且次生灾害将引起较大经济损失。该大跨连续梁桥所处地震带正进入活跃期,未来有发生较大规模强烈地震的可能,但桥梁自身不具备高烈度抗震能力,需利用粘滞阻尼器对其进行减震处理。采用斜向设置阻尼器并配合双曲面球型支座,来控制可能发生的纵向和横向地震。通过数值模拟进行阻尼器参数敏感性分析以及减震效果讨论,进而确定其最优设置方案。选取相关参数作为评价指标,对比加设阻尼器前后易损部位的地震响应,确定其在高烈度地震荷载激励下的减震效果。研究结果表明:在液体粘滞阻尼器的作用下,使得各墩协同受力,大大增加了结构的整体性,同时能很好弥补减隔震支座不能很好的控制上部结构位移的缺点,同时能降低罕遇地震力对桥墩的冲击损伤。因此,在高烈度区大跨度桥梁中更有必要设置阻尼器来抗震。  相似文献   

8.
Design formulas for supplemental viscous dampers to building structures are readily available in FEMA provisions and MCEER research reports. However, for the design of supplemental viscous dampers corresponding to a desired system damping ratio of highway bridges, there exist, if any, few design guidelines. This is particularly true if the bridge components such as elastomeric bearings, piers and abutment possess different damping ratios, stiffnesses, and lumped masses. In this paper, the design formulas for supplemental viscous dampers to highway bridges have been derived based on the concept of ‘composite damping ratio’. The design formulas can be used to determine the damping coefficients of the dampers corresponding to a desired system damping ratio of the bridge in which different component damping ratios may be assumed for the elastomeric bearings, piers and abutments. The proposed design formulas are numerically validated by comparing the seismic responses of a three‐span bridge equipped with viscous dampers with those of the same bridge without viscous dampers but with an assigned inherent system damping ratio equal to the target system damping ratio. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Viscoelastic (VE) dampers and active control (AC) systems are studied together as a hybrid system for their effectiveness in reducing the response of seismic structures. VE dampers have properties which are both frequency and temperature-dependent. On the other hand, AC systems for seismic structures require rather large control forces in order to be effective. The possibility of combining VE dampers and AC systems to improve the performance of both systems is examined. It is found that for the same response reduction, the addition of VE dampers to an AC system reduces the required control forces considerably, which reduces the cost of the AC system. The addition of the AC system helps improve the velocity performance of VE dampers and considerably reduces the possibility of shear failure of the viscoelastic material. Two procedures for evaluating the damping effect of the VE dampers are suggested which can be applied to either shear-type or framed structures. Two control algorithms based on drift and velocity/acceleration feedback are compared to existing algorithms. A method of determining the weighting matrices of an AC system is presented which reduces the required control forces for certain control algorithms.  相似文献   

10.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Viscous and other damping devices are often used as elements of seismic isolation systems. Despite the widespread application of nonlinear viscous systems particularly in Japan (with fewer applications in the USA and Taiwan), the application of viscous damping devices in isolation systems in the USA progressed intentionally toward the use of supplementary linear viscous devices due to the advantages offered by these devices. This paper presents experimental results on the behavior of seismically isolated structures with low damping elastomeric (LDE) and single friction pendulum (SFP) bearings with and without linear and nonlinear viscous dampers. The isolation systems are tested within a six‐story structure configured as moment frame and then again as braced frame. Emphasis is placed both on the acquisition of data related to the structural system (drifts, story shear forces, and isolator displacements) and on non‐structural systems (floor accelerations, floor spectral accelerations, and floor velocities). Moreover, the accuracy of analytical prediction of response is investigated based on the results of a total of 227 experiments, using 14 historic ground motions of far‐fault and near‐fault characteristics, on flexible moment frame and stiff braced frame structures isolated with LDE or SFP bearings and linear or nonlinear viscous dampers. It is concluded that when damping is needed to reduce displacement demands in the isolation system, linear viscous damping results in the least detrimental effect on the isolated structure. Moreover, the study concludes that the analytical prediction of peak floor accelerations and floor response spectra may contain errors that need to be considered when designing secondary systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
巨子型有控结构体系中黏滞阻尼器参数研究   总被引:2,自引:0,他引:2  
巨子型有控结构体系(Mega-sub Controlled Structure System,即MSCSS)是一种新型的超高层建筑结构体系.本文针对MSCSS的构造特点,提出一种安装黏滞阻尼器的新的布置方案,通过研究该布置方案中取不同黏滞阻尼器参数时巨子型有控结构体系在罕遇地震作用下的动力响应,提出了与该结构体系动力特...  相似文献   

13.
The insertion of fluid viscous dampers in building structures is an innovative technology that can improve significantly the seismic response. These devices could be very useful also in the retrofit of existing buildings. The effect of this typology of damping system is usually identified with an equivalent supplemental damping ratio, which depends on the maximum displacement of the structure, so that iterative procedures are required. In this paper, a simplified direct assessment method for nonlinear structures equipped with nonlinear fluid viscous dampers is proposed. The method proposed in this study is composed by two steps. The first one yields the direct estimate of the supplemental damping ratio provided by nonlinear viscous dampers in presence of a linear elastic structural response. The second step extends the procedure to structures with nonlinear behavior. Both graphical and analytical approaches have been developed. The proposed method has then been verified through several applications and comparisons with nonlinear dynamic analyses. Moreover, an investigation has been performed with regard to the influence of the relations that define the damping reduction factor and the hysteretic damping. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
基于AFSMC算法的结构非线性振动MR控制与仿真分析   总被引:2,自引:0,他引:2  
作为最近发展起来的高性能半主动控制装置,磁流变阻尼器通过改变磁场强度来调节控制力,可靠度高,体积小,出力大,并且具有Fail-Safe的特点,是一种具有广泛应用前景的新型结构控制装置。本文主要研究结构非线性振动的磁流变阻尼半主动控制。首先采用我们提出的自适应模糊滑模控制(AFSMC)算法得到了结构非线性振动的主动控制力,然后参照主动控制力,提出和仿真实现了结构非线性振动的磁流变阻尼半主动控制。最后,针对3层和20层benchm ark非线性模型,每层均设置一个磁流变阻尼器,对在给定的地震动下的结构响应进行了计算,分析了半主动控制跟踪主动控制的效果,并且对于半主动控制下的结构位移响应、加速度响应等各项指标也进行了对比分析。仿真结果表明,由于自适应模糊滑模控制算法与半主动控制算法相结合可以很好地实现结构非线性振动的半主动控制,所以能够得到令人满意的控制结果。  相似文献   

15.
Viscoelastic dampers (VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake. Various methods to design this kind of dampers have been proposed based on the desired level of additional damping, eigenvalue assignment, modal strain energy, linear quadratic regulator control theories, and other approaches. In the current engineering practice, the popular method is the one based on the modal strain energy that uses the inter-story lateral stiffness as one of the main variables for damper design. However, depending on the configuration of the structure, in some cases the resulting interstory lateral stiffness can be very large. Consequently, the dampers size would also be large producing much more damping than that effectively necessary, resulting in an increase of the overall cost of the supplemental damping system and causing excessive stress on the structural elements connected to the dampers. In this paper an alternative practical design method for structures with VEDs is proposed. This method uses the inter-story shear forces as one of the main variables to accomplish the damper design compared to what was done in previous studies. Nonlinear time-history analyses were conducted on a 7-story reinforced concrete (RC) structure to check the reliability and effectiveness of the proposed method. Comparisons on the seismic performance between the structure without dampers and that equipped with VEDs were carried out. It is concluded that the proposed method results in a very suitable size of dampers, which are able to improve the performance of the structure at all levels of earthquake ground motions and satisfying the drift requirement prescribed in the codes.  相似文献   

16.
Sliding base‐isolation systems used in bridges reduce pier drifts, but at the expense of increased bearing displacements under near‐source pulse‐type earthquakes. It is common practice to incorporate supplemental passive non‐linear dampers into the isolation system to counter increased bearing displacements. Non‐linear passive dampers can certainly reduce bearing displacements, but only with increased isolation level forces and pier drifts. The semi‐active controllable non‐linear dampers, which can vary damping in real time, can reduce bearing displacements without further increase in forces and pier drifts; and hence deserve investigation. In this study performance of such a ‘smart’ sliding isolation system, used in a 1:20 scaled bridge model, employing semi‐active controllable magneto‐rheological (MR) dampers is investigated, analytically and experimentally, under several near‐fault earthquakes. A non‐linear analytical model, which incorporates the non‐linearities of sliding bearings and the MR damper, is developed. A Lyapunov control algorithm for control of the MR damper is developed and implemented in shake table tests. Analytical and shake table test results are compared. It is shown that the smart MR damper reduces bearing displacements further than the passive low‐ and high‐damping cases, while maintaining isolation level forces less than the passive high‐damping case. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is based on the premise that the damping mechanism of a multidegree of freedom structure can be represented by viscous and coulomb dampers. A closed form solution for the structure subjected to a sinusoidal forcing function is presented. The solution is used as the basis of a method for determining relative amounts of viscous and coulomb damping from vibration tests. The method was applied to the results of a series of vibration tests on a five storey reinforced concrete structure and approximate values of viscous and coulomb damping obtained. A comparison of the effect of various combined damping values on the earthquake response of the structure was made. It was concluded that the use of the equivalent viscous damping concept to approximate the combined effect of viscous and coulomb damping results in a low estimate of the elastic response of the structure.  相似文献   

18.
Supplemental viscous damping devices are generally envisioned to be connected in parallel to the inelastic parent structure or hysteretic damping devices. This gives rise to higher base shear, and often greater ductility demand of the hysteretic system. The series connection of the viscous and hysteretic system (the inelastic structure or a damper) is an alternative approach. In this paper, comparisons between the series and parallel connections of the hysteretic system and viscous dampers are done through response spectra analyses of single degree of freedom structures. Ductility demand of the hysteretic system and the total base shear are chosen as the response quantities. For the series model, a semi‐implicit solution scheme for classical Maxwell model is modified to include the inelasticity of the time‐independent hysteretic spring. It is observed that the series connection of the 2 dampers gives lower base shear than does the parallel connection. For long‐period and low‐damping structures, the ductility demand of the hysteretic system in series connection is higher than that in parallel connection. Increasing the viscous damping in series connection reduces the ductility demand substantially, lower than that obtained in parallel connection. Practical methods for implementing the series and parallel connections, in line with roof isolation, are also suggested.  相似文献   

19.
This paper presents a direct displacement-based design procedure for seismic retrofit of existing buildings using nonlinear viscous dampers according to equivalent linear systems. Unlike conventional methods, the equivalent linear viscous damping provided by the nonlinear viscous dampers is derived based on the assumption that the average energy dissipated between the linear and the nonlinear viscous dampers is equal. Also, the equivalent period and viscous damping for the equivalent linear systems which are used for representing the behavior of bare frames (the buildings without dampers) are derived from the concept of average storage energy and average dissipated energy, respectively. It is shown from nonlinear time-history analyses that the nonlinear action of the retrofitted structures can be reasonably captured by the presented direct displacement-based procedure.  相似文献   

20.
The implementation of viscous dampers to microelectronics factories has been previously proved not to affect the micro‐vibration of the factories in operation so that the vibration‐sensitive manufacturing process will not be interfered. Therefore, a seismic retrofit strategy which employs the viscous dampers installed in between the exterior and interior structures of the ‘fab’ structure is proposed in the study. The design formulas corresponding to the proposed retrofit method are derived using the non‐proportional damping theory. Based on the study, it is found that the added damping ratio to the fab structure depends greatly on the frequency ratio of the two structures in addition to the damping coefficients of the added dampers. Outside the bandwidth of the frequency ratio in which the added damping ratio is very sensitive to the variation of the frequency ratio, the added damping ratio can be well captured using the classical damping theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号