首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.  相似文献   

2.
Large-eddy simulations are conducted to investigate the effects of the incoming turbulent structure of the flow on pollutant removal from an ideal canyon. The target canyon is a two-dimensional street canyon with an aspect ratio of 1.0 (building height to street width). Three turbulent flows upwind of the street canyon are generated by using different block configurations, and a tracer gas is released as a ground-level line source at the centre of the canyon floor. Mean velocity profiles for the three flows are similar, except near the roof. However, the root-mean-square values of the velocity fluctuations and the Reynolds shear stress increase with the friction velocity of the incoming turbulent flow. The spatially-averaged concentration within the canyon decreases with increasing friction velocity. Coherent structures of low-momentum fluid, generated above the upwind block configurations, contribute to pollutant removal, and the amount of pollutant removal is directly related to the size of the coherent structure.  相似文献   

3.
Flow resistance, ventilation, and pollutant removal for idealized two-dimensional (2D) street canyons of different building-height to street-width (aspect) ratios $AR$ are examined using the friction factor $f$ , air exchange rate (ACH), and pollutant exchange rate (PCH), respectively, calculated by large-eddy simulation (LES). The flows are basically classified into three characteristic regimes, namely isolated roughness, wake interference, and skimming flow, as functions of the aspect ratios. The LES results are validated by various experimental and numerical datasets available in the literature. The friction factor increases with decreasing aspect ratio and reaches a peak at $AR = 0.1$ in the isolated roughness regime and decreases thereafter. As with the friction factor, the ACH increases with decreasing aspect ratio in the wake interference and skimming flow regimes, signifying the improved aged air removal for a wider street canyon. The PCH exhibits a behaviour different from its ACH counterpart in the range of aspect ratios tested. Pollutants are most effectively removed from the street canyon with $AR = 0.5$ . However, a minimum of PCH is found nearby at $AR = 0.3$ , at which the pollutant removal is sharply weakened. Besides, the ACH and PCH are partitioned into the mean and turbulent components to compare their relative contributions. In line with our earlier Reynolds-averaged Navier–Stokes calculations (Liu et al., Atmos Environ 45:4763–4769, 2011), the current LES shows that the turbulent components contribute more to both ACH and PCH, consistently demonstrating the importance of atmospheric turbulence in the ventilation and pollutant removal for urban areas.  相似文献   

4.
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.  相似文献   

5.
The questions on how vortices are constructed and on the relationship between the flow patterns and concentration distributions in real street canyons are the most pressing questions in pollution control studies. In this paper, the very large eddy simulation (VLES) and large eddy simulation (LES) are applied to calculate the flow and pollutant concentration fields in an urban street canyon and a cross-road respectively. It is found that the flow separations are not only related to the canyon aspect ratios, but also with the flow velocities and wall temperatures. And the turbulent dispersions are so strongly affected by the flow fields that the pollutant concentration distributions can be distinguished from the different aspect ratios, flow velocities and wall temperatures.  相似文献   

6.
The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.  相似文献   

7.
A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.  相似文献   

8.
Using a computational fluid dynamics(CFD)model,the effects of street-bottom and building-roof heating on flow in three-dimensional street canyons are investigated.The building and street-canyon aspect ratios are one.In the presence of street-bottom heating,as the street-bottom heating intensity increases,the mean kinetic energy increases in the spanwise street canyon formed by the upwind and downwind buildings but decreases in the lower region of the streamwise street canyon.The increase in momentum due to buoyancy force intensifies mechanically induced flow in the spanwise street canyon.The vorticity in the spanwise street canyon strengthens.The temperature increase is not large because relatively cold above-roof-level air comes into the spanwise street canyon.In the presence of both street-bottom and building-roof heating,the mean kinetic energy rather decreases in the spanwise street canyon.This is caused by the decrease in horizontal flow speed at the roof level,which results in the weakening of the mean flow circulation in the spanwise street canyon.It is found that the vorticity in the spanwise street canyon weakens.The temperature increase is relatively large compared with that in the street-bottom heating case,because relatively warm above-roof-level air comes into the spanwise street canyon.  相似文献   

9.
A box model to simulate mass transfer inside deep street canyons and with atmospheric flow above is introduced and discussed. Two ideal deep street canyons with aspect ratios of 3 and 5 (the aspect ratio being the ratio between building height and street width H/W) are considered. This range of aspect ratios, found in many densely populated historical centres in Mediterranean cities as well as in other cities around the world, potentially creates high air pollutant concentration levels. Our model is based on a combination of analytical solutions and computation fluid dynamics (CFD) simulations using carbon monoxide (CO) as a tracer pollutant. The analytical part of the model is based on mass transfer velocity concepts while CFD simulations are used both for a preliminary validation of the physical hypothesis underlying the model (steady-state simulations) and to evaluate the concentration pattern with time (transient or wash-out simulations). Wash-out simulation curves were fitted by model curves, and mass transfer velocities were evaluated through a best-fitting procedure. Upon introducing into the model the contribution of traffic-produced turbulence, the modelled CO concentration levels became comparable with those obtained in real-world monitoring campaigns. The mass transfer rate between the canyon and the above atmosphere was then expressed in terms of an overall mass transfer velocity, which directly allows the evaluation of the mass transfer rate between the bottom volume of the canyon (pedestrian level) with the above atmosphere. Overall mass transfer velocities are reported as a function of the operating conditions studied (H/W = 3–5 and wind speeds = 2–8 ms−1). Finally, a simple expression is reported for determining pollutant concentrations at the pedestrian level based on the overall mass transfer velocity defined.  相似文献   

10.
Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the \(xy\) -, \(yz\) - and \(xz\) -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the \(yz\) -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the \(yz\) -plane of about 0 to 30 \(^\circ \) due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by the modes is invariably smaller than the fraction of energy they contain, particularly under stable conditions where the first modes are found to perform weak counter-gradient fluxes.  相似文献   

11.
Radiative Exchange in an Urban Street Canyon   总被引:1,自引:4,他引:1  
The influence of building geometry on the radiation terms ofthe surface energy balance is a principal reason for surfacetemperature differences between rural and urban areas.Methods exist to calculate the radiation balance in an urban area,but their validity across the range of urban geometries andmaterials has not been carefully considered.Here the exchange of diffuse radiation in an urban street canyon isinvestigated using a method incorporating all reflections of radiation.This exact solution is compared to two commonly used approximationsthat retain either no reflections, or just one reflection of radiation.The area-averaged net radiative flux density from the facets of the canyondecreases in magnitude monotonically as the canyon aspect ratio increases.The two approximate solutions possess unphysical differences from thismonotonic decrease for high canyon aspect ratios or low materialemissivities/high material albedos.The errors of the two approximate solutions are small for near blackbodymaterials and small canyon aspect ratios but can be an order ofmagnitude for intermediate material properties and deep street canyons.Urban street canyon models need to consider at least one reflectionof radiation and multiple reflections are desirable for full applicability.  相似文献   

12.
Scalar Fluxes from Urban Street Canyons Part II: Model   总被引:1,自引:1,他引:0  
A practical model is developed for the vertical flux of a scalar, such as heat, from an urban street canyon that accounts for variations of the flow and turbulence with canyon geometry. The model gives the magnitude and geometric dependence of the flux from each facet of the urban street canyon, and is shown to agree well with wind-tunnel measurements described in Part I. The geometric dependence of the flux from an urban street canyon is shown to be determined by two physical processes. Firstly, as the height-to-width ratio of the street canyon increases, so does the roughness length and displacement height of the surface. This increase leads to a reduction in the wind speed in the inertial sublayer above the street canyons. Since the speed of the circulations in the street are proportional to this inertial sublayer wind speed, the flux then reduces with the inertial sublayer wind speed. This process is dominant at low height-to-width ratios. Secondly, the character of the circulations within the street canyon also varies as the height-to-width ratio increases. The flow in the street is partitioned into a recirculation region and a ventilated region. When the street canyon has high height-to-width ratios the recirculation region occupies the whole street canyon and the wind speeds within the street are low. This tendency decreases the flux at high height-to-width ratios. These processes tend to reduce the flux density from the individual facets of the street canyon, when compared to the flux density from a horizontal surface of the same material. But the street canyon has an increased total surface area, which means that the total flux from the street canyon is larger than from a horizontal surface. The variations in scalar flux from an urban street canyon with geometry is over a factor of two, which means that the physical mechanisms responsible should be incorporated into energy balance models for urban areas.  相似文献   

13.
A step-up street canyon is a characteristic urban element composed of two buildings in which the height of the upwind building ( $H_\mathrm{u}$ ) is less than the height of the downwind building ( $H_\mathrm{d}$ ). Here, the effect of canyon geometry on the flow structure in isolated step-up street canyons is investigated through isothermal wind-tunnel measurements. The measurements were acquired along the vertical symmetry plane of model buildings using two-dimensional particle image velocimetry (PIV) for normal approach flow. The building-height ratios considered were: $H_\mathrm{d}/ H_\mathrm{u} \approx 3$ , and $H_\mathrm{d}/ H_\mathrm{u} \approx 1.67$ . For each building-height ratio, the along-wind lengths (L) of the upwind and downwind buildings, and the street-canyon width (S) were kept constant, with $L \approx S$ . The cross-wind widths (W) of the upwind and downwind buildings were varied uniformly from $W/S \approx 1$ through $W/S \approx 4$ , in increments of $W/S \approx 1$ . The objective of the work was to characterize the changes in the flow structure in step-up canyons as a function of W/S, for fixed L, S, and $H_\mathrm{d}/H_\mathrm{u}$ values. The results indicate that the in-canyon flow structure does not vary significantly for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ for the W/S values considered. Qualitatively, for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ , the upwind building behaves as an obstacle in the upwind cavity of the downwind building. In contrast, the flow patterns observed for the $H_\mathrm{d}/H_\mathrm{u} \approx 1.67$ configurations are unique and counter-intuitive, and depend strongly on building width (W/S). For $W/S \approx 1$ and $W/S \approx 2$ , the effect of lateral flow into the canyon is so prominent that even the mean flow patterns are highly ambiguous. For $W/S \approx 3$ and 4, the flow along the vertical symmetry plane is more shielded from the lateral flow, and hence a stable counter-rotating vortex pair is observed in the canyon. In addition to these qualitative features, a quantitative analysis of the mean flow field and turbulence stress field is presented.  相似文献   

14.
Urban morphology and inter-building shadowing result in a non-uniform distribution of surface heating in urban areas, which can significantly modify the urban flow and thermal field. In Part I, we found that in an idealized three-dimensional urban array, the spatial distribution of the thermal field is correlated with the orientation of surface heating with respect to the wind direction (i.e. leeward or windward heating), while the dispersion field changes more strongly with the vertical temperature gradient in the street canyon. Here, we evaluate these results more closely and translate them into metrics of “city breathability,” with large-eddy simulations coupled with an urban energy-balance model employed for this purpose. First, we quantify breathability by, (i) calculating the pollutant concentration at the pedestrian level (horizontal plane at \(z\approx 1.5\)–2 m) and averaged over the canopy, and (ii) examining the air exchange rate at the horizontal and vertical ventilating faces of the canyon, such that the in-canopy pollutant advection is distinguished from the vertical removal of pollution. Next, we quantify the change in breathability metrics as a function of previously defined buoyancy parameters, horizontal and vertical Richardson numbers (\(Ri_\text {h}\) and \(Ri_\text {v}\), respectively), which characterize realistic surface heating. We find that, unlike the analysis of airflow and thermal fields, consideration of the realistic heating distribution is not crucial in the analysis of city breathability, as the pollutant concentration is mainly correlated with the vertical temperature gradient (\(Ri_\text {v}\)) as opposed to the horizontal (\(Ri_\text {h}\)) or bulk (\(Ri_\text {b}\)) thermal forcing. Additionally, we observe that, due to the formation of the primary vortex, the air exchange rate at the roof level (the horizontal ventilating faces of the building canyon) is dominated by the mean flow. Lastly, since \(Ri_\text {h}\) and \(Ri_\text {v}\) depend on the meteorological factors (ambient air temperature, wind speed, and wind direction) as well as urban design parameters (such as surface albedo), we propose a methodology for mapping overall outdoor ventilation and city breathability using this characterization method. This methodology helps identify the effects of design on urban microclimate, and ultimately informs urban designers and architects of the impact of their design on air quality, human health, and comfort.  相似文献   

15.
Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where \(n > 1\). This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with \(\approx 25 H\) streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion ‘events’. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.  相似文献   

16.
Turbulent Transport of Momentum and Scalars Above an Urban Canopy   总被引:3,自引:3,他引:0  
Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection–sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and $\hbox {CO}_{2})$ . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for $\hbox {CO}_{2}$ at 47 m where the skewness of $\hbox {CO}_{2}$ fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection–sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and $\hbox {CO}_{2}$ are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.  相似文献   

17.
Air flow inside an array of cubes is simulated. Cubes (edge length 0.15 m) are arranged in a regular array, separated by 0.15 m in the streamwise and spanwise directions. Numerical simulations are performed based on Reynolds-averaged Navier–Stokes equations (RANS), solved in a computational fluid dynamics model (CFD), with standard k–ε turbulent closure (two prognostic equations are solved for the turbulent kinetic energy k and its dissipation ε, respectively). Simulations are validated against wind-tunnel data using a technique based on hit-rate calculations, and calculated statistical parameters. The results show that the horizontal velocity is very well modelled, and despite some discrepancies, the model that fulfils the hit-rate test criteria gives useful results that are used to investigate three-dimensional (3-D) flow structures. The 3-D analysis of the flow shows interesting patterns: the centre of the canyon vortex is at 3/4 of the canyon height, and stronger downward than upward motions are present within the canyon. Such behaviour is explained by the presence of a compensation flow through the side of the canyon, which enters the canyon from the upper part and exits from the lower part. This complex 3-D structure affects the tracer dispersion, and is responsible for pollutant transport and diffusion.  相似文献   

18.
This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.  相似文献   

19.
The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the spanwise canyon. This study shows the importance of three-dimensional simulations with detailed thermal boundary conditions to explore the heat and mass transport in an urban area.  相似文献   

20.
城市湍流边界层内汽车尾气扩散规律数值模拟研究   总被引:2,自引:1,他引:1  
吕萍  袁九毅  张文煜 《高原气象》2005,24(2):167-172
以纳维斯托克斯方程组、大气平流扩散方程、湍流动能及湍流动能耗散率方程组为基础.采用伪不定常方法,建立了一个数值模式.利用该模式列城市湍流边界层内流场结构及汽车排放污染物扩散规律进行了研究。结果表明:街谷内会形成一个涡旋型流场.汽车排放污染物浓度在地面及建筑物背风面产生堆积,且其沿高度方向的梯度变化在背风面大.迎风而小。随着街谷两侧建筑物屋顶风速的增大,峡谷内形成的涡旋流场的强度增大,污染物扩散速率增大:当屋顶来流与街道之间的夹角逐渐增大时.涡旋中心位置由街道中心偏向于背风面及更高层且污染物扩散速度加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号