首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irgarol 1051 is a s-triazine herbicide used in popular slime-resistant antifouling paints. It has been shown to be acutely toxic to corals, mangroves and sea grasses, inhibiting photosynthesis at low concentrations (>50 ng l(-1)). We present the first data describing the occurrence of Irgarol 1051 in coastal waters of the Northeastern Caribbean (Puerto Rico (PR) and the US Virgin Islands (USVI)). Low level contamination of coastal waters by Irgarol 1051 is reported, the herbicide being present in 85% of the 31 sites sampled. It was not detected in water from two oceanic reference sites. In general, Irgarol 1051was present at concentrations below 100 ng l(-1), although far higher concentrations were reported at three locations within Benner Bay, USVI (223-1,300 ng l(-1)). The known toxicity of Irgarol 1051 to corals and sea grasses and our findings of significant contamination of the Northeastern Caribbean marine environment by this herbicide underscore the importance of understanding, more fully, local and regional exposure of reef and sea grass habitats to Irgarol 1051 and, where necessary, implementing actions to ensure adequate protection of these important ecosystems.  相似文献   

2.
Photosystem II (PSII) herbicides have been shown to affect the photosynthesis of corals at low, environmentally relevant concentrations. The recent detection of the PSII herbicide Irgarol-1051 in coastal waters of Hong Kong at concentrations above the EC(50) for reduction of photosynthesis of corals prompted further investigation into the extent of PSII herbicide pollution in coral reefs of Hong Kong. Snap-shot and passive samples were taken from coral reef sites and evaluated via HPLC/MS-MS and a novel bioanalytical technique. Low concentrations (less than 10 ng L(-1)) of diuron and atrazine were found at all study sites. Extracts from these samples concentrated by a factor of 10 were found to reduce the photosynthetic yield of zooxanthellae. It appears unlikely that herbicide pollution is a key issue in isolation but may act synergistically with other stressors to reduce the viability of Hong Kong's coral reefs. The study has also demonstrated the feasibility of combining sample extraction techniques with a coral specific bioanalytical technique for a sensitive assessment of risks associated with herbicide exposure in corals.  相似文献   

3.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   

4.
《Marine pollution bulletin》2009,58(6-12):473-478
Photosystem II (PSII) herbicides have been shown to affect the photosynthesis of corals at low, environmentally relevant concentrations. The recent detection of the PSII herbicide Irgarol-1051 in coastal waters of Hong Kong at concentrations above the EC50 for reduction of photosynthesis of corals prompted further investigation into the extent of PSII herbicide pollution in coral reefs of Hong Kong. Snap-shot and passive samples were taken from coral reef sites and evaluated via HPLC/MS–MS and a novel bioanalytical technique. Low concentrations (less than 10 ng L−1) of diuron and atrazine were found at all study sites. Extracts from these samples concentrated by a factor of 10 were found to reduce the photosynthetic yield of zooxanthellae. It appears unlikely that herbicide pollution is a key issue in isolation but may act synergistically with other stressors to reduce the viability of Hong Kong’s coral reefs. The study has also demonstrated the feasibility of combining sample extraction techniques with a coral specific bioanalytical technique for a sensitive assessment of risks associated with herbicide exposure in corals.  相似文献   

5.
The objectives of this study were to: (1) measure water column concentrations of Irgarol 1051 and its major metabolite GS26575 annually (2004-2006) during mid-June and mid-August at 14 sites in a study area comprised of three sub-regions chosen to reflect a gradient in Irgarol exposure (Port Annapolis marina, Severn River and Severn River reference area); (2) use a probabilistic approach to determine ecological risk of Irgarol and its major metabolite in the study area by comparing the distribution of exposure data with toxicity-effects endpoints; and (3) measure both functional and structural resident phytoplankton parameters concurrently with Irgarol and metabolite concentrations to assess relationships and determine ecological risk at six selected sites in the three study areas described above. The three-year summer mean Irgarol concentrations by site clearly showed a gradient in concentrations with greater values in Back Creek (400-500 ng/L range), lower values in the Severn River sites near the confluence with Back Creek (generally values less than 100 ng/L) and still lower values (<10 ng/L) at the Severn River reference sites at the confluence with Chesapeake Bay. A similar spatial trend, but with much lower concentrations, was also reported for GS26575. The probability of exceeding the Irgarol plant 10th centile of 193 ng/L and the microcosm NOEC (323 ng/L) suggested high ecological risk from Irgarol exposure at Port Annapolis marina sites but much lower risk at the other sites. There were no statistically significant differences among the three site types (marina, river and reference) with all years combined or among years within a site type for the following functional and structural phytoplankton endpoints: algal biomass, gross photosynthesis, biomass normalized photosynthesis, chlorophyll a, chlorophyll a normalized photosynthesis and taxa richness. Therefore, based on the above results, Irgarol adverse effects predicted from the plant 10th centile and the microcosm NOEC in the high Irgarol exposure area (Back Creek/Port Annapolis marina) were not confirmed with the actual field data for the receptor species (phytoplankton). These results also highlight the importance of unconfined field studies with a chemical gradient in providing valuable information regarding the responses of resident phytoplankton to herbicides.  相似文献   

6.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

7.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

8.
In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.  相似文献   

9.
Sodium cyanide (NaCN) is widely used for the capture of reef fish throughout Southeast Asia and causes extensive fish mortality, but the effect of NaCN on reef corals remains debated. To document the impact of cyanide exposure on corals, the species Acropora millepora, Goniopora sp., Favites abdita, Trachyphyllia geoffrio, Plerogyra sp., Heliofungia actinformis, Euphyllia divisa, and Scarophyton sp., and the sea anemone Aiptasia pallida were exposed to varying concentrations of cyanide for varying time periods. Corals were exposed to 50, 100, 300, and 600 mg/l of cyanide ion (CN(-)) for 1-2 min (in seawater, the CN(-) forms hydrocyanic acid). These concentrations are much lower than those reportedly used by fish collectors. Exposed corals and anemones immediately retracted their tentacles and mesenterial filaments, and discharged copious amounts of mucus containing zooxanthellae. Gel electrophoreses techniques found changes in protein expression in both zooxanthellae and host tissue. Corals and anemones exposed to cyanide showed an immediate increase in mitotic cell division of their zooxenthellae, and a decrease in zooxanthellae density. In contrast, zooxanthellae cell division and density remained constant in controls. Histopathological changes included gastrodermal disruption, mesogleal degradation, and increased mucus in coral tissues. Zooxanthellae showed pigment loss, swelling, and deformation. Mortality occurred at all exposure levels. Exposed specimens experienced an increase in the ratio of gram-negative to gram-positive bacteria on the coral surface. The results demonstrate that exposure cyanide causes mortality to corals and anemones, even when applied at lower levels than that used by fish collectors. Even brief exposure to cyanide caused slow-acting and long-term damage to corals and their zooxanthellae.  相似文献   

10.
Trace metals in coral tissue and skeleton have been investigated in various ways since the early seventies. More recently it has been suggested that the symbiotic zooxanthellae may play an important role in the accumulation and regulation of trace metals. Furthermore gamete development and mucus production may influence the metal accumulation and loss in corals. Many studies have attempted to use the annual growth bands in coral skeletons to investigate historical pollution events. However the relationship between the metal concentrations in the surrounding environment and the incorporation of this into coral skeleton is not well understood. This paper explains a method for investigating metal loads in coral tissue, zooxanthellae and skeleton. Furthermore, it presents new information suggesting that zooxanthellae accumulate most metals (Al, Fe, As, Mn, Ni, Cu, Zn, Cd, Pb) in greater concentrations than the coral tissue. Coral skeletons had consistently lower metal concentration than the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress events may have a significant contribution to the total metal loads in corals. The use of corals as biomonitors should carefully factor in zooxanthellae densities and gamete development before conclusions are drawn.  相似文献   

11.
The ecotoxicological effects of Photosystem II herbicides on corals   总被引:1,自引:0,他引:1  
The recent discovery of contamination of the tropical marine environment by Photosystem II (PSII) herbicides used in agriculture and antifouling paints has led to concerns regarding the effects on corals and their symbiotic dinoflagellate algae. In reviewing the ecotoxicological studies conducted so far, PSII herbicides appear able to readily penetrate the coral tissues and rapidly (within minutes) reduce the photochemical efficiency of the intracellular algal symbionts. The dinoflagellates appear at least as sensitive to PSII herbicides as other phototrophs tested so far, with photosynthesis being affected at exceptionally low concentrations (i.e. in the ngl(-1) range). At these levels and over short exposure periods, the effects can be fully reversible (i.e. when corals are returned to clean seawater) and vary according to type of herbicide; however, when exposed to higher concentrations in the light or over longer exposure periods, it results in a long-term sustained reduction of the photochemical efficiency of the algae (symptomatic of chronic photoinhibition). This can result in the dissociation of the symbiosis (bleaching) which is a common but nevertheless significant sub lethal stress response requiring many months to recover from. It is argued that the reliance of corals on an endosymbiotic photoautotrophic energy source, together with predilection for the symbiosis to dissociate when photosynthesis of the algae is affected, renders coral particularly susceptible to changes in environmental conditions-and especially phytotoxins such as PSII herbicides.  相似文献   

12.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   

13.
Variations in Irgarol 1051 concentrations in the UK's largest marina at Brighton were determined regularly over a period of one year. Aqueous concentrations ranged from <1 to 960 ngl(-1) with highest mean concentrations generally associated with berths for larger vessels and with the main channels. Temporally, highest concentrations were recorded in November through to January and were probably associated with maintenance of vessels in an adjacent boatyard. Elevated levels were also encountered at the beginning of the season, coinciding with the introduction of newly antifouled vessels. Increased concentrations also followed dredging, possibly through re-mobilisation of Irgarol 1051. No correlations were found between dissolved Irgarol 1051 concentrations and pH, temperature or salinity. With the exception of sporadically high concentrations recorded for water samples (probably taken in close proximity to recently antifouled vessels), concentrations rarely exceeded the no observed effect concentration for marine periphyton of 63 ngl(-1). Concentrations of Irgarol 1051 in sediments sampled from the marina ranged from <1 to 77 ngg(-1). Apparent distribution coefficients (K(d)) calculated from sedimentary and aqueous samples (collected simultaneously) are generally within the range of K(d)'s reported from laboratory experiments.  相似文献   

14.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   

15.
In 2001, legislative measures were introduced in the UK to restrict usage of antifouling agents in small (<25 m) vessel paints to dichlofluanid, zinc pyrithione and zineb. This removed the previously popular booster biocides diuron and Irgarol 1051 from the market. To investigate the impact of this legislation, water samples were taken from locations where previous biocide levels were well documented. Results from analyses demonstrate a clear reduction in water concentrations of Irgarol 1051 (between 10% and 55% of that found during pre-restriction studies), indicating that legislation appears to have been effective. Although other booster biocides were screened for (chlorothalonil, dichlofluanid and Sea-Nine 211), they were below the limits of detection (<1 ng/l) in all samples. A survey of chandlers and discussions with legislative authorities supports these results and concurs the removal of Irgarol 1051 based paints from the market using simple regulations at a manufacturer level with little regulation at a retailer level.  相似文献   

16.
The objectives of this study were to measure: (1) Irgarol and GS26575 (major metabolite) during the peak 2004 boating season at selected marinas and reference areas in the Carolinian Zoogeographic Province of the Eastern United States; (2) Irgarol and GS26575 at selected stations during the summer months in the Back Creek/Severn River area in Maryland in 2003 and 2004; and (3) structural and functional characteristics of resident phytoplankton communities concurrently with Irgarol and GS26575 monitoring in Back Creek/Severn River area. Irgarol concentrations from 14 marinas in the Carolinian Province ranged from non-detectable (<1 ng/L) to 85 ng/L; concentrations were less than 16 ng/L at all reference sites. The probability of exceeding the plant 10th centile for Irgarol (251 ng/L) was less than 0.6% for all marinas and 0.01% for all reference areas. These data suggest low ecological risk from Irgarol exposure for both marina and reference areas in the Carolinian Province. Irgarol concentrations ranged from 5 ng/L at the Severn River reference site to 1,816 ng/L in Port Annapolis marina during the two year study. Ecological risk from Irgarol exposure was high for the Port Annapolis marina sites based on a probability of exceeding the plant 10th centile. However, risk was low for Severn River and Severn River reference sites. Functional and structural measures of resident phytoplankton communities in the Back Creek and Severn River did not suggest that these target species are impaired in the Port Annapolis marina area where probabilistic analysis predicted adverse effects from Irgarol exposure.  相似文献   

17.
《Marine pollution bulletin》2013,70(1-2):189-194
Irgarol 1051 is a common antifouling biocide and is highly toxic to non-target plant species at low ng/L concentrations. We measured up to 254 ng/L Irgarol in water and up to 9 ng/g dry weight Irgarol in sediments from Southern California recreational marinas. Irgarol’s metabolite, M1, concentrations were up to 62 ng/L in water and 5 ng/g dry weight in sediments. Another antifouling biocide, diuron, reached up to 68 ng/L in water and 4 ng/g dry weight in sediments. The maximum Irgarol concentrations in water were greater than the Irgarol concentration recommended as the plant toxicity benchmark (136 ng/L), suggesting that Irgarol concentrations may be high enough to cause changes in phytoplankton communities in the sampled marinas. Irgarol concentrations measured in sediments were greater than calculated Environmental Risk Limits (ERLs) for Irgarol in sediments (1.4 ng/g). Antifouling pesticide accumulation in sediments may present a potential undetermined risk for benthic organisms.  相似文献   

18.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   

19.
Irgarol and its major metabolite (GS26575) were measured in Maryland waters of Chesapeake Bay: (1) in and near 10 marinas, a mainstem Bay site and two Severn River locations during a general survey in July and December of 2002; (2) at various sites in the Port Annapolis Marina and the Severn River area during March of 2002 before the boating season began; and (3) during July (peak boating season) in the same Port Annapolis Marina and Severn River sites area during both an ebb and flood tide. Irgarol concentrations ranged from 1.82 ng/l at the mid-Bay site to 585 ng/l in Port Annapolis marina during the July and December general survey. An Irgarol 90th centile of 239 ng/l was reported for the 10 marina sites, two Severn River sites and one mainstem site sampled during the general survey conducted in July and December. Temporal analysis of all pooled data showed that 90th centiles were over seven times higher in July when compared to December. A comparison of Irgarol concentrations at 12 sites in the Port Annapolis marina and Severn River area during both an ebb and flood tide in July showed no consistent trend with tidal cycle by site although significant reductions in concentrations were reported with distance from the three Port Annapolis marina sites. Ecological risk from Irgarol exposure was judged to be low for most Chesapeake Bay sites sampled. Possible exceptions were Port Annapolis marina, Severn River sites in close proximity to this marina and Chesapeake Harbor marina where Irgarol concentrations exceeded a conservative effects threshold during the peak boating season in July. Ecological risk from GS26575 exposure was low for all sites.  相似文献   

20.
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 microug L(-1) Irgarol vs. > 200 microg L(-1) M1; S. costatum, 0.29 microg L(-1) Irgarol vs. 11.32 microg L(-1)M1; and T. pseudonana, 0.41 microg L(-1) Irgarol vs. 16.50 microg L(-1)M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号