首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

2.
The south-western shoreline along the entrance channel inside the Port of Richards Bay has experienced continued erosion. Four groynes were constructed to stabilise the shoreline. Monitoring of shoreline evolution provided valuable data on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while the other is “protected” according to the Wiegel [Wiegel, R. L. (1964). Oceanographical engineering. Prentice Hall, Inc., Englewood Cliffs, NJ.] classification. The shoreline accreted progressively at the two groynes at 0.065 m/day and 0.021 m/day respectively. The shorelines accreted right up to the most seaward extremity of the groynes. Equilibrium shorelines were reached within about 3.5 years to 4 years, which compare well with other sites around the world. The mean wave incidence angle is large and was found to be about 22°. The median sand grain sizes were 0.33 mm and 0.37 mm. The groynes acted as total traps, the beach surveys were extended to an adequate depth, and cross-shore sediment transport did not cause appreciable net sand losses into the entrance channel. The net longshore transport rate along the study area, which is north-westbound, is only slightly lower than the gross longshore transport. The actual net longshore transport rates are 18 000 m3/year and 4 600 m3/year respectively at the two groynes. A rocky area limits the availability of sand at one groyne. There is fair agreement between the predicted and measured longshore transport rates at the other groyne.  相似文献   

3.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

4.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

5.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   

6.
A fuzzy inference system (FIS) and a hybrid adaptive network-based fuzzy inference system (ANFIS), which combines a fuzzy inference system and a neural network, are used to predict and model longshore sediment transport (LST). The measurement data (field and experimental data) obtained from Kamphuis [1] and Smith et al. [2] were used to develop the model. The FIS and ANFIS models employ five inputs (breaking wave height, breaking wave angle, slope at the breaking point, peak wave period and median grain size) and one output (longshore sediment transport rate). The criteria used to measure the performances of the models include the bias, the root mean square error, the scatter index and the coefficients of determination and correlation. The results indicate that the ANFIS model is superior to the FIS model for predicting LST rates. To verify the ANFIS model, the model was applied to the Karaburun coastal region, which is located along the southwestern coast of the Black Sea. The LST rates obtained from the ANFIS model were compared with the field measurements, the CERC [3] formula, the Kamphuis [1] formula and the numerical model (LITPACK). The percentages of error between the measured rates and the calculated LST rates based on the ANFIS method, the CERC formula (Ksig = 0.39), the calibrated CERC formula (Ksig = 0.08), the Kamphuis [1] formula and the numerical model (LITPACK) are 6.5%, 413.9%, 6.9%, 15.3% and 18.1%, respectively. The comparison of the results suggests that the ANFIS model is superior to the FIS model for predicting LST rates and performs significantly better than the tested empirical formulas and the numerical model.  相似文献   

7.
The characteristics and effects of large-scale flow structures developed in the benthic boundary layer downstream from large topographic features were analysed throughout a tidal cycle. The observed signature of the macro-turbulent features consisted of streamwise modules of low horizontal velocity and high suspended sediment concentration (SSC), alternating with modules of high horizontal velocity and low SSC. These modules extended 10 to 20 m streamwise and exceeded 1 m vertically, and are believed to be related to flow separation effects over large bedforms upstream of the deployment site. The macroscale flow modules intensified the ‘ burst-like ’ turbulent events and favoured sediment transport. ‘ Ejection-like ’ events were magnified during modules of decreasing horizontal velocity and increasing turbidity, whereas ‘ sweep-like ’ events were magnified during modules of increasing horizontal velocity and decreasing SSC. The enhanced turbidity of the macroscale modules may be the result of enhanced upward diffusion of sediment by ejection events, whereas the low-turbidity modules may be induced by increased downward transport of suspended sediment by sweep events. These hypotheses were supported by cross-spectral analysis performed on velocity and suspended sediment concentration time-series recorded at the site. An enhanced (negative) contribution of outward and inward interaction events to the Reynolds stress, compared to those reported in uniform BBLs, resulted in ‘ abnormally ’ low stress values.  相似文献   

8.
The influence of large-scale natural disturbance from winter storms (‘northers’) and river runoff on the macrobenthic community structure of the southern Gulf of Mexico was investigated in both carbonate and transitional carbonate–terrigenous sedimentary environments. Samples of the infauna were obtained in three seasons from 13 stations from two 250 km transects along 80–170 and 20–50 m water depth. Samples after the northers season had the lowest total number of families and individuals, 114 and 2940, respectively, compared to the dry and rainy seasons with 129 and 132 families and 11580 and 15266 individuals, respectively. Spatial patterns of macroinfauna composition varied across and along the shelf as a response to sedimentary environments and depth. Coarser sediments from the carbonate area harboured the highest mean densities per station with 500–24,000 individuals m−2 and 108–122 families in total, compared to the transitional sediment with 500–8200 individuals m−2 and 56–74 families across the three seasons. Univariate and multivariate statistical techniques demonstrated that low densities and number of taxa were associated with winter storms, but storm influence was dependent on depth and sediment type. Multiple linear regression analysis and BIOENV analysis indicated that sediment mean grain size, percentage of clay and organic matter best explained the macroinfauna spatial patterns, although BIOENV indicated that depth has an overriding role. An increase in densities of opportunistic taxa (numerous polychaetes of small sizes) was observed four months after the ‘northers’ and this was more evident in the area of carbonate sediment. Additionally a combined disturbance from northers and river runoff is suspected to be responsible for a naturally impoverished macroinfauna community in the transitional sedimentary environment.  相似文献   

9.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   

10.
We observed the onshore migration (3.5 m/day) of a nearshore sandbar at Tairua Beach, New Zealand during 4 days of low-energy wave conditions. The morphological observations, together with concurrent measurements of waves and suspended sediment concentrations, were used to test a coupled, wave-averaged, cross-shore model. Because of the coarse bed material and the relatively low-energy conditions, the contribution of the suspended transport to the total transport was predicted and observed to be negligible. The model predicted the bar to move onshore because of the feedback between near-bed wave skewness, bedload, and the sandbar under weakly to non-breaking conditions at high tide. The predicted bathymetric evolution contrasts, however, with the observations that the bar migrated onshore predominantly at low tide. Also, the model flattened the bar, while in the observations the sandbar retained its steep landward-facing flank. A comparison between available observations and numerical simulations suggests that onshore propagating surf zone bores in very shallow water (< 0.25 m) may have been responsible for most of the observed bar behaviour. These processes are missing from the applied model and, given that the observed conditions can be considered typical of very shallow sandbars, highlight a priority for further field study and model development. The possibility that the excess water transported by the bores across the bar was channelled alongshore to near-by rip-channels further implies that traditional cross-shore measures to judge the applicability of a cross-shore morphodynamic model may be misleading.  相似文献   

11.
Okarito Lagoon (43° 11′S, 170° 14′E) is a small (20 km2) shore‐parallel, predominantly subtidal estuary, deepest near the landward end, and linked to the sea by two subtidal channels incised through shallow subtidal and intertidal flats which occupy the southern third of the lagoon. Tides at sea vary from 2.1m (spring) to 1.2 m (neap), but in the lagoon the tidal range is constant through the lunar cycle and varies from 0.80 m at the entrance to 0.17 m in the upper lagoon. Tidal water level and flow asymmetries in the subtidal channels are separated by a 1.7 h phase difference. Variations in the net discharge through the inlet result from changing flow cross‐sections rather than from variations in current velocities. Both the tidal‐averaged volume and the tidal compartment of the lagoon vary through the lunar cycle, from maxima at spring tides to minima at neap tides.

Freshwater inflows vary from less than 11 m3.s‐1 to more than 750 m3.s‐1. During storms, water level in the lagoon rises rapidly by 2–3 m, then declines to normal over several days. Three water masses, two with salinity and turbidity largely controlled by antecedent rainfall, normally occur in the lagoon. Suspended sediment concentrations in both freshwater inflows and lagoon waters are normally low but increase during floods. Most sediment is supplied by the Waitangi‐taona River or by erosion of tidal channel margins. The lagoon is floored with organic‐rich mud and sandy mud, deposited predominantly from suspension. Surface sediment is consistently muddier than subsurface sediment, probably reflecting an increase in the mud supply since diversion of the Waitangi‐taona River in 1967.

Comparisons of the estimated sediment yield and water inflow effects of the 1967 river diversion with short‐term observations during selective logging suggest that the effects of logging on sediment yield, water balance of the lagoon, and dissolved solids inputs will be small compared with changes caused by diversion of the Waitangi‐taona River.  相似文献   

12.
A new predictive formula for the total longshore sediment transport (LST) rate was developed from principles of sediment transport physics assuming that breaking waves mobilize the sediment, which is subsequently moved by a mean current. Six high-quality data sets on hydrodynamics and sediment transport collected during both field and laboratory conditions were employed to evaluate the predictive capability of the new formula. The main parameter of the formula (a transport coefficient), which represents the efficiency of the waves in keeping sand grains in suspension, was expressed through a Dean number based on dimensional analysis. The new formula yields predictions that lie within a factor of 0.5 to 2 of the measured values for 62% of the data points, which is higher than other commonly employed formulas for the LST rate such as the CERC equation or the formulas developed by Inman–Bagnold and Kamphuis, respectively. The new formula is well suited for practical applications in coastal areas, as well as for numerical modeling of sediment transport and shoreline change in the nearshore.  相似文献   

13.
《Coastal Engineering》1999,38(1):25-46
A data set of several thousands of hours of near-bed flow, obtained at three cross-shore positions in 3- to 9-m water depth in the multiple bar system of Terschelling (Netherlands), was used to estimate the medium-term (≈years) frequency distribution of the cross-shore suspended sediment transport rates induced by short waves, infragravity waves and cross-shore mean flows. Predictions of an energetics-based transport model were categorised into groups of the local height-over-depth ratio with a width of 0.02 and were subsequently coupled to the discrete medium-scale probability distribution of this ratio. At all depths, the estimated medium-scale sediment transport rate by the short waves, qms,h, and mean flows, qms,mf, were of approximately equal magnitude and were about three times as large as that of the infragravity waves. In general, the medium-term sediment transport rates were dominated neither by the most extreme conditions nor by day-to-day situations. This was related to the infrequent recurrence of the most energetic events and by the predicted negligible transport rates under daily conditions. In 9-m depth, breaking conditions contributed to about 90% of both qms,h and qms,mf. In shallower water (3–5 m), non-breaking conditions became increasingly important for qms,h, whereas qms,mf remained fully dominated by surf zone conditions. This observation as well as literature findings for water depths less than about 3 m suggest that the range of small-scale conditions that contribute most to qms,h and qms,mf changes in the onshore direction from mainly breaking conditions at depths in excess of 5–7 m towards prolonged non-breaking periods for qms,h and short breaking events for qms,mf on the beach.  相似文献   

14.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

15.
《Coastal Engineering》2005,52(2):119-137
The autonomous nearshore bar behaviour along the barrier island of Terschelling, The Netherlands, is characterised by the presence of net seaward cyclic migrating sand bars generated near the shoreline. In 1993, a perturbation of the cyclic bar system was introduced by the implementation of a 2 Mm3 shoreface nourishment supplied to the nearshore bar zone, filling up the trough between the middle and outer bar. The morphodynamic response of the nearshore bars to the nourishment perturbation is investigated using a bathymetric data set with an alongshore extent of 12 km and sampled for 10 years. Bar behaviour is quantified in terms of bar crest position in relation to morphometric parameters such as bar depth, height, width and volume. Along with a pronounced development of a three-dimensional bar system unseen in the autonomous behaviour, the nearshore bars exhibited a 6–7 year arrest in their migrational behaviour during which bar morphology remained stable at immediate pre-nourishment morphometric values. At the subsequent onset of bar movement, bars resumed their migration at a rate predicted by autonomous behaviour in parallel development with morphometric parameters along their predicted trends. It is shown that the observed onshore transport of nourished sediment in the 6–7 year arrest results from a gradual deepening of troughs. Cross-shore sediment transport modelling is used to assess the effect of the nourishment on yearly averaged onshore (short-wave nonlinearity) and offshore (undertow) sediment transport rates. The gradual reappearance of the pre-nourishment bar-trough morphology is shown to engender a normalisation in the cross-shore distribution of sediment transport rates to pre-nourishment rates.  相似文献   

16.
17.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

18.
The sediment transport parameter helps determining the amount of sediment transport in cross-shore direction. The sediment transport parameter therefore, should represent the effect of necessary environmental factors involved in cross-shore beach profile formation. However, all the previous studies carried out for defining shape parameter consider the parameter as a calibration value. The aim of this study is to add the effect of wave climate and grain size characteristics in the definition of transport rate parameter and thus witness their influence on the parameter. This is achieved by taking the difference in between “the equilibrium wave energy dissipation rate” and “the wave energy dissipation rate” to generate a definition for the bulk of sediment, dislocating within a given time interval until the beach tends reach an equilibrium conditions. The result yields that empirical definition of transport rate parameter primarily governs the time response of the beach profile. Smaller transport rate value gives a longer elapsed time before equilibrium is attained on the beach profile. It is shown that any significant change in sediment diameter or wave climate proportionally increases the value of the shape parameter. However, the effect of change in wave height or period on sediment transport parameter is not as credit to as mean sediment characteristics.  相似文献   

19.
PROWQM, a 1-D depth resolving model which couples physical and microbiological processes in the water column with sedimentation/resuspension and benthic mineralisation processes, has been used to simulate seasonal changes of chlorophyll, nutrients and oxygen at the PROVESS north site (59°20′N 1°00′E) in the North Sea. PROWQM is derived from the 3-D model COHERENS, and improves COHEREN's benthic and pelagic biology.The physical sub-model of PROWQM implicitly solves turbulence closure equations forced by climatological, or realistic high-frequency, meteorological and tidal data. The pelagic biological sub-model 2MPPD includes a ‘diatomy’ microplankton (mp1) and a ‘flagellatey’ (or microbial loop) microplankton (mp2), the cycling of silicon and nitrogen, slow-sinking detritus, and fast-sinking phytodetritus. Phytodetritus is formed by shear-driven aggregation of particulate material, using a simple algorithm for bulk processes that is derived by considering the interactions of single cells. The microplankton compartments include heterotrophic bacteria and protozoa as well as phytoplankton, and most microplankton rates are specified with the aid of a ‘heterotroph fraction’ parameter, which was 0.125 for mp1 and 0.6 for mp2. The microbiological system is closed by mesozooplankton grazing pressures imposed as time varying series determined from observed zooplankton abundance. The benthic boundary sub-model includes a superficial fluff layer and a nutrient element reservoir in the consolidated sediment. Particulate material in the fluff layer can be resuspended (in response to bed stress by near-bed flows), mineralised or carried by bioturbation into the underlying, consolidated, sediment, where it is mineralised and its nutrients returned to the water-column at rates mainly dependent on (implicit) macrobenthic pumping. Benthic denitrification can occur when mineralisation rates exceed oxygen supply.Verification of the PROWQM numerical implementation used test cases and checks for nutrient element conservation. Simulations with realistic forcing, for a range of parameter values, were compared with historic observations in the NOWESP data set and during FLEX76, and with those made during the PROVESS cruises in autumn 1998. PROWQM provided a good simulation of the seasonal succession from a diatom-dominated spring bloom to summer dominance by small flagellates. The simulations included sedimentation of organic matter from the spring bloom, and qualitatively realistic behaviour of the fluff layer, but decay rates were too slow and there was almost no denitrification. The simulated surface mixed layer was too shallow during the summer. Simulated annual net microplankton primary production was in between 59 and 91 g C m−2 y−1. A large proportion of mineralisation, 28–47% of nitrogen and 40–67% of silicon mineralisation, took place as a result of the decay of sinking and resuspended detritus whilst in the water column.PROWQM is discussed in relation to other models that have been used to simulate this part of the North Sea, in particular the simpler ECOHAM1 and the more complex ERSEM, and in relation to PROWQM's evolution from COHERENS.  相似文献   

20.
Euphausiids are an important component of the zooplankton in boundary current upwelling regions, including the Pacific Northwest continental margin. Many aspects of euphausiid distribution and ecology in this region are well known. However, some features of their spatial and temporal distribution are less understood:
• How and why euphausiids aggregate near the shelf-break upwelling center.
• How and why there is (within an alongshore band of high abundance of all stages) spatial segregation of adults and larvae.
• Why, despite spatial association with upwelling, euphausiid abundance off Vancouver Island is weakly or negatively correlated at interannual time scales with upwelling intensity.
To address these, we made km-resolution surveys of adult, juvenile, and larval euphausiid horizontal distributions, water properties, and currents across the Vancouver Island shelf break in mid-to-late spring of two successive years. Survey timing was before (1997) and after (1998) the spring transition to upwelling conditions, and near the annual spring reproductive peak. In both years, early developmental stages occupied an alongshore band that was offset from the late juveniles and adults. The direction of the offset differed between the two surveys. Early life history stages (larvae and early juveniles) were shoreward of adults in April 1997 (downwelling-conditions), but seaward of adults in May 1998 (upwelling-conditions). Separation distance (order 5–10 km) was consistent with expected differences in cumulative wind-driven (and vertically-sheared) cross-shore transport of surface-dwelling larvae and early juveniles vs. transport of diel migratory late juveniles and adults. Separation direction was consistent with recent history of winds and Ekman transport—shoreward during poleward winds, and seaward into blue water (and usually into a strong equatorward current) during equatorward winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号