首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Isotope signatures associated with early meteoric diagenesis   总被引:12,自引:0,他引:12  
The environments in which carbonate diagenesis proceeds have been documented in previous studies of Holocene and late Pleistocene sediments and limestones on Barbados, West Indies. Variations in the carbon and oxygen isotopic composition of limestones, produced during early freshwater diagenesis, have been observed in this study to occur in specific patterns. Six potentially useful patterns emerge when one views stable isotope data within a stratigraphic framework: (1) the subaerial exposure surface is characterized by strongly 12C-enriched limestones. δ13C compositions of underlying limestones grow progressively heavier with increasing depth; (2) the subaerial exposure surface may also be marked by slight 18O-enrichment; (3) an abrupt shift in δ18O values may differentiate sediments above the exposure surface from those below; (4) sediments altered in the marine-meteoric mixing zone may be characterized by positive covariance between their δ18O and δ13C compositions; (5) the vadose-phreatic boundary may be marked by a sharp increase in δ13C values in the seaward portions of a fresh groundwater system; and (6) samples contemporaneously altered in a single fresh groundwater system within an areally restricted region should display a narrow range of δ18O and a wide range of δ13C compositions. Analysis of samples from five Palaeozoic and Mesozoic formations, which contained petrographic evidence of early freshwater diagenesis, showed that isotope patterns similar to those observed in Barbados limestones have been preserved in rocks as old as Mississippian. These isotope patterns could prove to be useful for identifying diagenetically induced porosity trends in carbonate rocks. They might be used to identify limestones diagenetically altered in meteoric environments, to identify mixing zone cements and dolomites, and to trace the regional and vertical distributions of early meteoric groundwater systems in ancient carbonate formations.  相似文献   

2.
《Applied Geochemistry》1998,13(1):49-57
Isotopic analyses of shell material from the freshwater mussel Elliptio complanata produced mean C concentrations that were depleted in 14C and 13C relative to the lake water DIC. Depleted C isotope values were attributed to the incorporation of 12C-enriched metabolic C into the shell. Microsampling of longitudinal sections of shell revealed a seasonal pattern in the δ13C values. The seasonal pattern matched predictions that DIC δ13C and metabolic rate determine the final shell δ13C concentration. The greatest depletion of δ13C occurred in the summer. Similar δ13C patterns in marine and freshwater mollusks probably record not only temperature fluctuations, upwelling events, and phytoplankton blooms as reported, but also the changes in metabolic activity brought on by such events.  相似文献   

3.
Physical and chemical parameters were measured in a subtropical estuary with a blind river source in southwest Florida, United States, to assess seasonal discharge of overland flow and groundwater in hydrologic mixing. Water temperature, pH, salinity, alkalinity, dissolved inorganic carbon (DIC), δ18O, and δ13CDIC varied significantly due to seasonal rainfall and climate. Axial distribution of the physical and chemical parameters constrained by tidal conditions during sampling showed that river water at low tide was a mixture of freshwater from overland flow and saline ground-water in the wet season and mostly saline groundwater in the dry season. Relationships between salinity and temperature, δ18O, and DIC for both the dry and wet seasons showed that DIC was most sensitive to seawater mixing in the estuary as DIC changed in concentration between values measured in river water at the tidal front to the most seaward station. A salinity-δ13CDIC model was able to describe seawater mixing in the estuary for the wet season but not for the dry season because river water salinity was higher than that of seawater and the salinity gradient between seawater and river water was small. A DIC-δ13CDIC mixing model was able to describe mixing of carbon from sheet flow and river water at low tide, and river water and seawater at high tide for both wet and dry seasons. The DIC-δ13CDIC model was able to predict the seawater end member DIC for the wet season. The model was not able to predict the seawater end member DIC for the dry season data due to secondary physical and biogeochemical processes that altered estuarine DIC prior to mixing with seawater. The results of this study suggest that DIC and δ13CDIC can provide additional insights into mixing of river water and seawater in estuaries during periods where small salinity gradients between river water and seawater and higher river water salinities preclude the use of salinity-carbon models.  相似文献   

4.
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite‐like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (δ13C) and oxygen (δ18O) in the carbonate and organic carbon (δ13Corg) were determined and compared with δ18O of water and δ13C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]?1) vs. (δ13C‐DIC × ([DIC]/[DIC0])) ( Sayles & Curry, 1988 ). The δ13C value of added DIC was ?13·6‰, corresponding to the dissolution of CO2 with δ13C between ?19·5 and ?23·0‰ Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing δ13C and decreasing δ18O. The lack of covariation between δ13C and δ18O indicates that precipitation of calcite was not kinetically controlled for either of the elements. δ13C and δ18O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation.  相似文献   

5.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   

6.
《International Geology Review》2012,54(15):1909-1921
This paper reports the carbon and oxygen isotope compositions of lacustrine carbonate sediments from the Palaeogene Shahejie Formation, Qikou depression, Bohaiwan Basin, with the aim of determining the palaeoenvironmental conditions in the region. Results from Es2, the second member of the Shahejie Formation, showed values of δ13C and δ18O from –1.2‰ to +2.4‰ (average +0.6‰) and from –6.8‰ to –4.7‰ (average –5.7‰), respectively, suggesting a relatively hot climate attending deposition. The slightly closed nature of the lake, which contains brackish water, resulted in higher carbonate δ13C and δ18O values than in a meteoric environment. The values of δ13C and δ18O preserved within the carbonates of the overlying lower Shahejie I (Es1) varied between +1.3‰ and +4.9‰ (average +3.2‰) and from ?4.4‰ to ?1.8‰ (average ?3.1‰), respectively, indicating that the climate became colder at that time. Subsequently, a marine transgression caused the salinity of the lake water to increase. The values of δ13C and δ18O were controlled by salinity. The high δ13C values were also influenced by the rapid burial of the lake organisms and by algal photosynthesis. Values of δ13C and δ18O from carbonates in upper Es1 ranged from ?8.0‰ to +11.0‰ (average +10.1‰) and from ?5.0‰ to ?1.5‰ (average ?3.4‰), respectively, indicating a slight increase in the temperature over time. In the closed and reducing environment, extremes in δ13C values resulted from biochemical fermentation. The positive δ13C excursion recorded in the carbonates of the Shahejie Formation in the Qikou depression indicates that the palaeoclimate underwent a significant transformation during the Eocene and the Oligocene.  相似文献   

7.
Abstract Positive shifts in global seawater δ13CDIC are related to changes in the ratio of organic relative to inorganic carbon burial in oceanic basins, whereas factors such as climatic cooling and the accumulation of polar ice are known to cause positive shifts in δ18O. Here, an alternative model is proposed for the formation of local positive isotope shifts in shallow-marine settings. The model involves geochemically altered platform-top water masses and the effects of early meteoric diagenesis on carbonate isotopic composition. Both mechanisms are active on modern (sub)tropical carbonate platforms and result in low carbonate δ13C and δ18O relative to typical oceanic values. During high-amplitude transgressive events, the impact of isotopically light meteoric fluids on the carbonate geochemistry is much reduced, and 13C-depleted platform-top water mixes with open oceanic water masses having higher isotope values. Both factors are recorded as a transient increase in carbonate 13C and 18O relative to low background values. These processes must be taken into consideration when interpreting the geochemical record of ancient epeiric seas.  相似文献   

8.
The Danshuei River flows through the heavily populated metropolitan area of Taipei and New Taipei cities, which causes remarkable additions of nutrient elements. In spite of the rather short residence time of water, the Danshuei estuary is distinctive for the very high ammonium concentration and extensive hypoxia in its lower reach. Because particulate organic matter (POM) is potentially the culprit of hypoxia, we investigate the isotopic characteristics of POM collected in February and July 2009 at a fixed station over four semidiurnal tidal cycles. By using nitrogen isotopic composition and C/N ratio of POM, we derive the relative contributions of POM from different sources. One potential source that combines dead and living phytoplankton, phytodetritus, has δ15N values that can be predicted by the δ15N of ammonium and the isotope effect during ammonium uptake; however, the isotope effect is concentration dependent. We employ a three-end-member mixing model based on δ15N and C/N ratio to calculate the fractional contributions from three major POM sources, i.e., phytodetritus, soil, and sediment. Sensitivity test was conducted for the derivations from both carbon and nitrogen basis. For February 2009 we found the three fractions (in terms of contribution to the particulate organic carbon) to be 45 ± 19, 10 ± 11 and 45 ± 13 %, respectively; for July 2009, 71 ± 18, 11 ± 10 and 18 ± 13 %, respectively. The results imply that phytodetritus is probably the major culprit for the hypoxic conditions in the estuary, especially, in summer.  相似文献   

9.
Meteoric sphaerosiderite lines (MSLs), defined by invariant δ18O and variable δ13C values, are obtained from ancient wetland palaeosol sphaerosiderites (millimetre‐scale FeCO3 nodules), and are a stable isotope proxy record of terrestrial meteoric isotopic compositions. The palaeoclimatic utility of sphaerosiderite has been well tested; however, diagenetically altered horizons that do not yield simple MSLs have been encountered. Well‐preserved sphaerosiderites typically exhibit smooth exteriors, spherulitic crystalline microstructures and relatively pure (> 95 mol% FeCO3) compositions. Diagenetically altered sphaerosiderites typically exhibit corroded margins, replacement textures and increased crystal lattice substitution of Ca2+, Mg2+ and Mn2+ for Fe2+. Examples of diagenetically altered Cretaceous sphaerosiderite‐bearing palaeosols from the Dakota Formation (Kansas), the Swan River Formation (Saskatchewan) and the Success S2 Formation (Saskatchewan) were examined in this study to determine the extent to which original, early diagenetic δ18O and δ13C values are preserved. All three units contain poikilotopic calcite cements with significantly different δ18O and δ13C values from the co‐occurring sphaerosiderites. The complete isolation of all carbonate phases is necessary to ensure that inadvertent physical mixing does not affect the isotopic analyses. The Dakota and Swan River samples ultimately yield distinct MSLs for the sphaerosiderites, and MCLs (meteoric calcite lines) for the calcite cements. The Success S2 sample yields a covariant δ18O vs. δ13C trend resulting from precipitation in pore fluids that were mixtures between meteoric and modified marine phreatic waters. The calcite cements in the Success S2 Formation yield meteoric δ18O and δ13C values. A stable isotope mass balance model was used to produce hyperbolic fluid mixing trends between meteoric and modified marine end‐member compositions. Modelled hyperbolic fluid mixing curves for the Success S2 Formation suggest precipitation from fluids that were < 25% sea water.  相似文献   

10.
Surface lake sediments,28 from Hoh Xil,24 from northeastern China,99 from Lake Bosten,31 from Ulungur and 26 from Heihai were collected to determine δ13C and δ18O values.Considering the impact factors,conductivity,alkalinity,pH,TOC,C/N and carbonate-content in the sediments,Cl,P,S,and metal element ratios of Mg/Ca,Sr/Ca,Fe/Mn of bulk sediments as environmental variables enable evaluation of their influences on δ13C and δ18O using principal component analysis(PCA) method.The closure and residence time of lakes can influence the correlation between δ13C and δ18O.Lake water will change from fresh to brackish with increasing reduction and eutrophication effects.Mg/Ca in the bulk sediment indicates the characteristic of residence time,Sr/Ca and Fe/Mn infer the salinity of lakes.Carbonate formation processes and types can influence the δ13C–δ18O correlation.δ18O will be heavier from Mg-calcite and aragonite formed in a high-salinity water body than calcite formed in freshwater conditions.When carbonate content is less than 30%,there is no relationship with either δ13C or δ18O,and also none between δ13C and δ18O.More than 30%,carbonate content,however,co-varies highly to δ13C and δ18O,and there is also a high correlation between δ13C and δ18O.Vegetation conditions and primary productivity of lakes can influence the characteristics of δ13C and δ18O,and their co-variance.Total organic matter content(TOC) in the sediments is higher with more terrestrial and submerged plants infilling.In northeastern and northwestern China,when organic matter in the lake sediments comes from endogenous floating organisms and algae,the δ13C value is high.δ13C is in the range of 4‰ to 0‰ when organic matter comes mainly from floating organisms(C/N<6);in the range of 4‰ to 8‰ when organic matter comes from diatoms(C/N=6 to 8);and 8‰ to 4‰ when organic matter comes from aquatic and terrestrial plants(C/N>8).  相似文献   

11.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

12.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

13.
Strong contrasts in ambient isotope ratios and in diet suggest stable isotopes in the otoliths of oceanic fish can resolve water masses and geographic areas, promising a powerful multivariate approach for examining population structure and provenance. To test this, whole otoliths were taken from Patagonian toothfish (Dissostichus eleginoides) sampled off the Patagonian Shelf and South Georgia, on either side of a population boundary, and otolith δ18O and δ13C values were measured to see if they could distinguish South American-caught fish from those taken in the Antarctic. Values of otolith δ18O and δ13C predicted capture area with 100% success, validating their use for distinguishing provenance and corroborating the prior evidence of population isolation. Values of δ18O in the otoliths reflected ambient values as well as seawater temperature: low values in Patagonian Shelf fish were consistent with exposure to Antarctic Intermediate Water (AAIW), and high values in South Georgia fish were consistent with exposure to Circumpolar Deep Water (CDW). In contrast, differences in otolith δ13C appeared to reflect diet: relative depletion of otolith δ13C at South Georgia compared to the Patagonian Shelf were most likely linked to differences in sources of metabolic carbon, as well as δ13C in dissolved inorganic carbon (DIC) of seawater. These contrasting properties strongly suggest that stable isotopes can resolve the provenance of toothfish from Antarctic sampling areas that hitherto have been difficult to separate. These results show that, by using the chemistry recorded in otoliths, researchers can exploit biogeochemical variation in fully marine environments to examine the spatial ecology of oceanic fish.  相似文献   

14.
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in δ18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in δ18O of pedogenic carbonate recorded after this eruption. The δ13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
张云峰  王清晨 《地质科学》2007,42(3):570-578
对济阳坳陷奥陶系碳酸盐原岩及孔洞缝中充填方解石进行了C、O同位素测定,结果表明孔洞缝充填方解石的δ13C和δ18O值比原岩偏负。奥陶系三山子组和马家沟组孔缝中充填的方解石C、O同位素演化有很大区别,前者的δ13C和δ18O值均为负值,δ13C向较高负值偏移,δ18O值向较低负值偏移;马家沟组八陡段孔缝充填方解石的δ13C和δ18O值也多为负值,δ13C向较正值方向偏移,δ18O值向较高负值偏移。奥陶系碳酸盐岩孔缝充填方解石形成于大气淡水环境和埋藏成岩环境,次生孔洞可能主要形成于早期表生阶段,裂缝形成于中-新生代的构造运动,方解石主要充填于埋藏环境中。次生孔缝的主要形成时期早于油气大量运移期,对古潜山油藏的形成有利。  相似文献   

16.
Water temperature, oxygen isotope composition and the δ13C of dissolved inorganic carbon were measured in 2 southern Michigan rivers, the Huron River and Fleming Creek, between late September 1990 and June 1992. The final full year of shell growth in 3 unionids collected in 1992 from these rivers was sampled for stable isotope analysis with a resolution of 30 μm. The δ18O of both shell nacre and the prismatic layer is accurately predicted by a fractionation relationship developed for biogenic aragonite. High resolution sampling of 3 species and bulk sampling of 3 other species suggest that all unionids adhere to this oxygen isotope fractionation relationship. This relationship is used to show that shell growth ceases below approximately 12°C. In these 2 settings the average δ18O value of shell (PDB scale) is within 0.5‰ of the average δ18O of river water (SMOW scale). Unionids can therefore be used in oxygen-isotope-based paleoclimatic and paleohydrologic reconstructions. In contrast, the carbon isotope ratio of shell is not accurately predicted by published fractionation factors between D.I.C. and carbonate. Shell δ13C is more negative than predicted values and the offset is highly variable suggesting a significant and variable incorporation of metabolic carbon into the shell carbonate.  相似文献   

17.
Peter K. Swart 《Sedimentology》2015,62(5):1233-1304
Stable carbon and oxygen isotopes (δ18O and δ13C values) and trace elements have been applied to the study of diagenesis of carbonate rocks for over 50 years. As valuable as these insights have been, many problems regarding the interpretation of geochemical signals within mature rocks remain. For example, while the δ18O values of carbonate rocks are dependent both upon the temperature and the δ18O value of the fluid, and additional information including trace element composition aids in interpreting such signals, direct evidence of either the temperature or the composition of the fluids is required. Such information can be obtained by analysing the δ18O value of any fluid inclusions or by measuring the temperature using a method such as the ‘clumped’ isotope technique. Such data speak directly to a large number of problems in interpreting the oxygen isotope record including the well‐known tendency for δ18O values of carbonate rocks to decrease with increasing age. Unlike the δ18O, δ13C values of carbonates are considered to be less influenced by diagenesis and more a reflection of primary changes in the global carbon cycle through time. However, many studies have not sufficiently emphasized the effects of diagenesis and other post‐depositional influences on the eventual carbon isotopic composition of the rock with the classic paradigm that the present is the key to the past being frequently ignored. Finally, many additional proxies are poised to contribute to the interpretation of carbonate diagenesis. Although the study of carbonate diagenesis is at an exciting point with an explosion of new proxies and methods, care should be taken to understand both old and new proxies before applying them to the ancient record.  相似文献   

18.
《Geochimica et cosmochimica acta》1999,63(11-12):1825-1836
Oxygen isotope data have been obtained for silicate inclusions in diamonds, and similar associated minerals in peridotitic and eclogitic xenoliths from the Finsch kimberlite by laser-fluorination. Oxygen isotope analyses of syngenetic inclusions weighing 20–400 μg have been obtained by laser heating in the presence of ClF3. 18O/16O ratios are determined on oxygen converted to CO2 over hot graphite and, for samples weighing less than 750 μg (producing <12 μmoles O2) enhanced CO production in the graphite reactor causes a systematic shift in both δ13C and δ18O that varies as a function of sample weight. A “pressure effect” correction procedure, based on the magnitude of δ13C (CO2) depletion relative to δ13C (graphite), is used to obtain corrected δ18O values for inclusions with an accuracy estimated to be ±0.3‰ for samples weighing 40 μg.Syngenetic inclusions in host diamonds with similar δ13C values (−8.4‰ to −2.7‰) have oxygen isotope compositions that vary significantly, with a clear distinction between inclusions of peridotitic (+4.6‰ to +5.6‰) and eclogitic paragenesis (+5.7‰ to +8.0‰). The mean δ18O composition of olivine inclusions is indistinguishable from that of typical peridotitic mantle (5.25 ± 0.22‰) whereas syngenetic purple garnet inclusions possess relatively low δ18O values (5.00 ± 0.33‰). Reversed oxygen isotope fractionation between olivine and garnet in both diamond inclusions and diamondiferous peridotite xenoliths suggests that garnet preserves subtle isotopic disequilibrium related to genesis of Cr-rich garnet and/or exchange with the diamond-forming fluid. Garnet in eclogite xenoliths in kimberlite show a range of δ18O values from +2.3‰ to +7.3‰ but garnets in diamondiferous eclogites and as inclusions in diamond all have values >4.7‰.  相似文献   

19.
High-resolution δ18O and δ13C records obtained from seven cores were drilled from ledges of the reef builder gastropod Dendropomapetreaum and used to reconstruct variations in the Levantine basin sea surface temperature, hydrology and productivity during the past 500 years. The δ18O of the aragonite shell of living D. petreaum indicate that skeletal deposition occurs under isotopic equilibrium and faithfully record the temperature and surface water δ18O during summer and autumn. The mean down core δ18O record clearly captures global and local climatic events, such as the Little Ice Age (LIA) and the recent warming of surface waters in the Eastern Mediterranean. Comparison to the Western Mediterranean vermetid δ18O record reveals changes in the freshwater/evaporation budgets of the two basins during cold and warm periods. The Eastern basin had lower surface temperatures and excess evaporation during the LIA and experienced a relatively larger warming and/or a decrease in freshwater/evaporation during the past 70 years. The D. petraeum δ13C is strongly related to δ13C of dissolved inorganic carbon and to the primary productivity of the surface water. The mean down core δ13C record exhibits enrichment during the LIA maximum and a strong depletion trend during the last century. The LIA δ13C enrichment is attributed to an increase in primary production and high nutrient levels which resulted from increased vertical mixing and upwelling. The last century δ13C depletion is mostly related to the increased anthropogenic emissions of 13C depleted carbon dioxide and to a certain decrease in primary production. The data indicate that D. petraeum isotopic signatures are unique proxies for last 500 years high-resolution reconstruction of paleo-oceanographic environments in the Mediterranean and potentially in the sub-tropical Atlantic regions.  相似文献   

20.
《Applied Geochemistry》2000,15(2):157-169
Ground-water chemistry and the stable C isotope composition (δ13CDIC) of dissolved inorganic C (DIC) were measured in a sand aquifer contaminated with JP–4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14–20 mg C/L and δ13CDIC values of −11.3‰ to −13.0‰. The contaminant source zone was characterized by an increase in DIC content (12.5 mg C/L to 54 mg C/L), Ca, and alkalinity, with a significant depletion of 13C in δ13CDIC (−11.9‰ to −19.2‰). The source zone of the contaminant plume was also characterized by elevated levels of aromatic hydrocarbons (0 μg/L to 1490 μg/L) and microbial metabolites (aromatic acids, 0 μg/L to 2277 μg/L), non-detectable dissolved O2, NO3 and SO4. Phospholipid ester-linked fatty acid analyses suggest the presence of viable SO4-reducing bacteria in ground water at the time of sampling. The ground-water chemistry and stable C isotope composition of ground-water DIC are interpreted using a chemical reaction model involving rainwater recharge, contributions of CO2 from soil gas and biodegradation of hydrocarbons, and carbonate dissolution. The major-ion chemistry and δ13CDIC were reconciled, and the model predictions were in good agreement with field measurements. It was concluded that stable C isotope measurements, combined with other biogeochemical measures can be a useful tool to monitor the dominant terminal electron-accepting processes in contaminated aquifers and to identify mineralogical, hydrological, and microbiological factors that affect δ13C of dissolved inorganic C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号