首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several well-preserved Late Pleistocene spit systems occur uplifted in northern Jylland, Denmark. Their present-day morphological expression allows detailed study of spit growth patterns while the internal sedimentological organisation can be examined in a series of pits distributed along the length of the spits. Two characteristic vertical sequences are recognized in the systems. The first (Sequence I) consists of a giant-scale cross-bedded foreset unit, overlain by topset and beach units, while the second (Sequence II) consists of the foreset unit overlain by bar-trough and beach units. The two sequence types pass laterally into each other with a short overlap zone. They can be interpreted in terms of Meistrell's (1966, 1972) model for spit-platform growth based on scaled wave tank experiments. The giant-scale cross-bedded unit corresponds to prograding of a coarse-grained subaqueous spit-platform while the topset, bar-trough and beach units reflect the growth of the subaerial spit. The alternation between sequence I and II reflects the inversely related growth of the spit and platform structures: when the rate of subaqueous platform progradation declines, the subaerial spit grows uniformly, and when the platform progrades uniformly spit growth declines. The model is probably only valid for relatively coarse-grained systems because only these deposits would have a relatively steep front. The water depth in which the spit system progrades and thus bottom topography, determines the thickness of the giant-scale cross-bedded foreset unit because the water depth over the top of the platform is relatively constant. If the water is less than a few metres deep the spit-platform is not developed as seen where the Late Pleistocene spit systems prograded over elevations of the sea bottom. Conversely, the correct recognition of spit-platform sequences allows precise determination of sea-level and water depth at the time of formation. Finally, the model adds one further mode of formation of giant-scale cross-bedding to those already known from fluvial transverse, lateral and point bars, subtidal sand waves and Gilbert deltas.  相似文献   

2.
The Orange River, the principal conduit transporting diamonds from hinterland sources to the Namibian coast in post-Cretaceous times, is characterised by an extreme wave dominated delta that has given rise to a progression of coarse rudaceous littoral deposits preserved onshore for > 150 km north of the mouth. Under the long-lived, prevailing vigorous wave, wind and northward longshore drift regimes, the Orange River outfall has been reworked into, amongst others, a series of economically viable, diamondiferous Plio-Pleistocene onshore gravel beach deposits. These placers comprise spits and barrier beaches in the proximal reach within the palaeo-Orange River mouth that, after ca. 5 km northwards, merge into extensive but narrow linear beaches that, in turn after ca. 70 km, give way to pocket beaches. Gravel and diamond size decreases northwards away from the ancestral Orange River mouth. The linear and pocket beach types have considerably higher diamond content but lower average diamond stone size than the two proximal units that are characterised by low diamond grade but comparatively large average diamond size. Given the risk of delineating low grade alluvial diamond deposits accurately, we present here sedimentological reconstructions of the subtidal, intertidal and supra-tidal facies that constitute the spit and barrier beach sequences, based largely on face mapping of exploration trenches and open-cast, mine cuts, as well as the results of large tonnage, sampling campaigns. Diamond distribution is also linked convincingly to basic littoral processes that were operational within the palaeo-Orange River mouth during the complex transgression that gave rise to the + 30 m package in Plio-Pleistocene times. In both the spit and barrier beach settings, the intertidal deposits prove to be the most promising targets whereas the subtidal sediments are the least economic. The constant raking associated with coarse, cobble–boulder-sized gravel foreshore deposits in an energetic micro-tidal wave regime increased the average diamond stone size in the intertidal deposits to 1 to 2 carats per stone (cts/stn), but the lack of fixed trapsites (no competent footwall within the palaeo-Orange River mouth at that level) prohibited the accumulation of substantially enriched diamondiferous gravels. Consequently, grades of only 1.5 to 6 carats per 100 tons (cpht) are realised. The highest grades (2 to 6 cpht) are found in the landward-facing, intertidal beach deposits on the spits where gentle reworking in that sheltered environment had somewhat enriched and preserved the diamond content. Significantly, the low average stone size of ca. 0.5 cts/stn in this lower energy setting probably reflects that of the general diamond population available at that time. In contrast, the sand-rich subtidal deposits in the spit sequence return the lowest grades (0.1 to 0.5 cpht), similar to those in the slightly younger, subtidal transgressive boulder lags of the barrier beaches. However, the stone size in the spit subtidal sediments is also low (0.1 to 0.5 cts/stn) due to the highly mobile, fine-grained character of those deposits, whereas that in the subtidal transgressive lag is large (2 to 3 cts/stn) as a result of the local, semi-permanent turbulence associated with the boulder-sized clasts in these gravel sheets. Diamond distribution is therefore also influenced by littoral facies and associated beach types, in addition to the spatial and temporal parameters that have already been documented for the onshore marine placers of the southern Namibian coast.  相似文献   

3.
Inclined beds of sand, granules, pebbles and cobbles resembling a glacio-tectonically tilted sequence were shown by sedimentological studies to constitute the 10–12 m thick foreset beds of a glaciolacustrine Gilbert-type delta in Kyndby, North Sjælland, Denmark. The foreset beds are slightly curved, dip 10–28 SE, and display a bundlewise structure with alternating coarse-grained cobble-rich and fine-grained sandy units. The occurrence of ascending megaripple cross-bedding and climbing ripple cross-lamination in the sandy foresets can be ascribed to strong backflow currents formed by the lee-side vortice. The foreset beds are underlain by flat-lying fine-grained sand, silt and clay (bottomset beds), and are overlain transitionally or erosively by 2–3 m of flat-lying sand, pebbles and cobbles (topset beds). In the transition zone between foreset beds and topset beds, various delta distributary channel units occur. The delta probably formed in a partly ice-dammed lake in connection with the general retreat of a Weichselian advance from the north ('Norwegian ice')  相似文献   

4.
The Doumsan fan-delta system in the Pohang Basin (Miocene), SE Korea comprises tripartite components of Gilbert-type topset, foreset, and bottomset environments with an extended prodelta in the deeper part (a few hundred metres deep). The present study documents sedimentologic features and origin of a gravel body (here interpreted as a gravel lobe) formed in the prodelta region of the Doumsan fan delta. The gravel lobe lies on sandy mud deposits and is capped by a thick massive sand bed. It extends for more than 1.5 km with a height of up to 30 m and shows a narrow tongue-like geometry. Eight sedimentary facies have been distinguished to describe characteristic features of the gravel lobe and the associated deposits. Of these, three types of gravelly sedimentary facies are important with regard to volumetric contribution and depositional processes: (1) crudely stratified pebble-grade conglomerate; (2) disorganized, clast-rich pebble(-to-cobble)-grade conglomerate; and (3) matrix-rich, bimodal cobble-grade conglomerate. The former two types dominate the central part of the lobe where they are not accompanied by sand beds, whereas the latter, as subordinate units, is prevalent in the fringe which otherwise is dominated by thick sandy mud deposits. The stacked successions of crudely stratified pebble-grade conglomerate are representative of the active aggradational phases of the gravel lobe, whereas the occurrence of channels within the lobe reflects that the gravel lobe prograded under the influence of subaqueous channel systems. The gravel lobe resulted from catastrophic disturbance (slumping) on the foreset region that further caused the development of channel systems, promoting efficient transport of gravelly sediments. This type of deposit may represent an important additional category of low-efficiency subaqueous fans.  相似文献   

5.
The architectural framework and Holocene evolution of the Zeballos fjord‐head delta on west‐central Vancouver Island was established through a multidisciplinary field‐based study. The Zeballos delta is a composite feature, consisting of an elevated, incised, late Pleistocene delta and an inset Holocene delta graded to present sea level. Both deltas have a classic Gilbert‐type tripartite architecture, with nearly flat topset and bottomset units and an inclined foreset unit. Time domain electromagnetic (TDEM) and ground‐penetrating radar (GPR) surveys, borehole data, and gravel pit exposures provided information on the internal form, lithologies and substrate of both deltas. Both sets of deltaic deposits coarsen upward from silt in the bottomset unit to gravel in the topset unit. The TDEM survey revealed a highly irregular, buried bedrock surface, ranging from 20 m to 190 m in depth, and it delineated saltwater intrusion into the deltaic sediments. Late Quaternary sea‐level change at Zeballos was inferred from delta morphology and the GPR survey. The elevated, late Pleistocene delta was constructed when the sea was about 21 m higher relative to the land than it is today. It was dissected when sea‐level fell rapidly as a result of glacio‐isostatic rebound. Relative sea‐level reached a position about 20 m below the present datum during the early Holocene. Foreset beds that overlap and progressively climb in a seaward direction and topset beds that thicken to 26 m landward imply that the delta aggraded and prograded into Zeballos Inlet during the middle and late Holocene transgression. Sea‐level may have risen above the present datum during the middle Holocene, creating a delta plain at about 4 m a.s.l. Remnants of this surface are preserved along the valley margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

7.
D. Uli&#;ný 《Sedimentology》2001,48(3):599-628
Deposits of coarse‐grained, Gilbert‐type deltas showing varying degrees of reworking of foresets by basinal currents were identified in Middle Turonian to Early Coniacian sandstones of the Bohemian Cretaceous Basin. The progradation of the deltaic packages, earlier interpreted as large‐scale subaqueous dunes, shelf ridges or subaqueous fault‐scarp ‘accumulation terraces’, was controlled by high‐ and low‐frequency, relative sea‐level changes in a relatively slowly subsiding, intracontinental strike‐slip basin. End‐member types of the Bohemian Cretaceous coarse‐grained deltas are deep‐water deltas, characterized by thick (50–80 m) foreset packages with steep (10–30°) foresets, and shallow‐water deltas, which deposited thin (<15 m) packages with foresets typically between 4° and 10°. The differences in thickness and foreset slope angle were controlled predominantly by the accommodation available during progradation. The depositional regime of the deltas was governed by (i) the fluvial input of abundant sand bedload, with a minor proportion of gravel; (ii) gravity flows, most probably caused by liquefaction of the upper part of the unstable foreset slope; and (iii) migration of sandy bedforms on the foreset slopes. The bedform migration was driven by unidirectional currents of possible tidal origin. Individual foreset packages represent systems tracts, or parts of systems tracts, of depositional sequences. A variety of stacking patterns of high‐frequency sequences exists in the basin, caused by low‐frequency relative sea‐level changes as well as by local changes in sediment input. Because of generally low subsidence rates, fluvial or beach topset strata were not preserved in the cases studied. The absence of preserved fluvial facies, which has been one of the main arguments against the fluvio‐deltaic origin of the sandstone bodies, is explained by erosion of the topsets during transgression and their reworking into coarse‐grained lags of regional extent covering ravinement surfaces.  相似文献   

8.
ABSTRACT The Lower Old Red Sandstone (Downton to ?Emsian) in southern Britain is a largely fluviatile sequence of increasing upward sand-dominance. The highest beds at two groups of localities include many sedimentation units composed of gravelly foresets in depositional continuity with overlying topsets of parallel-laminated sandstone. These units are thought to have been fashioned by humpback bars having a crest a considerable way upstream from the brink at the top of a gravelly slipface. The overall textural composition but internally segregated character of the bar units suggests that a bimodal sediment load of mixed sand and gravel was supplied at the upstream end of the bar, but that this load became texturally differentiated as it moved downstream. Differentiation is suggested to have occurred because the comparatively large and well-rounded gravel particles behaved on the sandy topset as though on a smooth surface, and were transported under similar flow conditions to the sand, much of which eventually lodged on the topset instead of being passed on, like the gravel, to the slipface beyond. A quantitative model is outlined which justifies the proposed gravel overpassing. In terms of the control of sedimentary structures exerted by grain size under laboratory conditions, the association of cross-bedding (gravel) with simultaneously formed parallel lamination (sand) seems to be a natural consequence of the efficient textural differentiation of the supplied load by the overpassing of the gravel component under a single flow condition.  相似文献   

9.
《Sedimentary Geology》1999,123(3-4):199-218
Gravelly shoreline deposits of the latest Pleistocene highstand of Lake Lahontan occur in pristine depositional morphology, and are exposed in gravel pits along Churchill Butte in west-central Nevada. Four environments differentiated at this site are alluvial fan/colluvium, lakeshore barrier spit, lake lower-shoreface spit platform, and lake bottom. Lakeshore deposits abut, along erosional wave headcuts, either unsorted muddy to bouldery colluvium fringing Churchill Butte bedrock, or matrix-supported, cobbly and pebbly debris-flow deposits of the Silver Springs fan. The lakeshore barrier spit is dominated by granule pebble gravel concentrated by wave erosion of the colluvial and alluvial-fan facies. The lakeward side of the barrier consists of beachface deposits of well-sorted granules or pebbles in broad, planar beds 1–10 cm thick and sloping 10–15°. They interfinger downslope with thicker (10–25 cm) and less steep (5–10°) lakeward-dipping beds of fine to medium pebble gravel of the lake upper shoreface. Interstratified with the latter are 10–40-cm-thick sets of high-angle cross-beds that dip southward, alongshore. Higher-angle (15–20°), landward-dipping foresets of similar texture but poorer sorting comprise the proximal backshore on the landward side of the barrier. They were deposited during storm surges that overtopped the barrier berm. Gastropod-rich sand and mud, also deposited by storm-induced washover, are found landward of the gravel foresets in a 15-m-wide backshore pond. Algal stromatolites, ostracodes, and diatoms accumulated in this pond between storm events. The lake lower shoreface, extending from water depths of 2 to 8 m, consists of a southward-prograding spit platform built by longshore drift. The key component of this platform is large-scale sandy pebble gravel in 16° southward-dipping `Gilbert' foresets that grade at a water depth of about 6–7 m to 4°-dipping sandy toesets. A shift from bioturbated lower-shoreface sand and silt, to flat and laminated lake-bottom silt and mud, occurs between water depths of 10–40 m and over a shore-normal distance of ≥250 m. This lake-bottom mud facies, unlike the others, is areally expansive.  相似文献   

10.
The Pliocene Loreto basin is an asymmetrical half graben located on the eastern margin of Baja California Sur, Mexico, which formed by rapid subsidence along the dextral-normal Loreto fault. The southern Loreto basin contains numerous, well exposed coarse-grained Gilbert-type fan deltas that were derived from the footwall of the Loreto fault. Detailed sedimentological study of individual foreset beds provides information about down-slope flow transformations of cohesionless sediment gravity flows in shallow water. Deposits of Gilbert-delta foresets consist of ungraded, normal-graded, inverse- to normal-graded, and bipartite conglomerate and sandstone. Lateral transitions in sorting, grading style and internal structure are commonly observed within individual beds, both across and down slope, suggesting heterogeneity within flows and a close relationship between high-density turbidity currents and gravel traction carpets. A conceptual model for flow transformation and deposition of high-density turbidity currents on Gilbert-delta foreset slopes is developed for Pliocene strata in the Loreto basin. In this model, ungraded cohesionless debris flows evolved rapidly down-slope into normal-graded gravelly turbidity currents. With continued down-slope transport, the gravel fraction collapses and becomes concentrated into a basal traction carpet undergoing laminar shear, and is over-ridden by a sandy turbulent suspension. The short distances (10–20 m) over which lateral transitions within single beds are observed indicate very rapid flow transformations (10–20 s) and rapid deposition of gravel traction carpets by frictional freezing on and near the base of the foreset slope.  相似文献   

11.
Facies relationships in Pleistocene braided outwash deposits in southern Ontario demonstrate the presence of a large braid bar with adjacent side channel. The core of the bar is up to 6 m high, and consists of crudely horizontally stratified gravels. Downstream from the core is the bar front facies, consisting of large gravelly foresets up to 4 m high, rounded off in many places by reactivation surfaces. Upstream from the core is the bar stoss side facies consisting of several sets (individually up to 35 cm thick) of tabular cross-bedding, arranged in coarsening-upward sequences. The stoss side—core—bar front relationships are continuously exposed in one 400 m long quarry face which is cut almost parallel to the palaeoflow direction. A transverse quarry face shows the side channel facies, which consists of trough cross-bedded sands. Gravel layers can be seen to finger from the main gravelly bar into the sandy side channel, but they do not reach the base of the channel. This surprising relationship indicates that gravel moved only in the topographically higher parts of the system. After deposition in the side channel, and growth upstream and downstream from the bar core, the entire system aggraded. Crudely horizontally stratified, and imbricated gravel sheets were laid down as a bar top facies. Grain size analyses indicate strongly bimodal distributions, implying that much of the sand in the spaces between pebbles and boulders filtered in after the gravel had been deposited. This interpretation is strengthened by velocity calculations—mean velocities in excess of 300 cm/s would be needed to roll the gravel as bed load, but at such a velocity, a large amount of sand would be transported entirely in suspension. In a final section of the paper, our results are combined with other work on braided systems in an attempt to formulate a more general facies model.  相似文献   

12.
Maar craters of the Mio-Pliocene Hopi Buttes volcanic field of Arizona formed within a broad playa system, and accumulated a variety of lacustrine sedimentary deposits. Many craters initially held isolated, groundwater-fed lakes. Ephemeral streams crossing the playa entered some of the lake-filled craters, and built coarse grained Gilbert-type deltas and subaqueous fans along the margins of these craters. The small, coarse grained fans and deltas have many features in common with much larger coarse grained deltaic and fan deltaic deposits. However, the local production of coarse grained volcanic sediment, low gradients in the local stream catchment, steep subaqueous relief and the small size of the receiving ‘basins’resulted in a unique combination of features. Cone-shaped subaqueous fans initially formed at the mouths of incised feeder streams. The fans are small accumulations of steeply dipping gravelly tephra that consist almost entirely of overlapping lobes constructed by density-modified grain flows. Gravelly Gilbert-type tephra deltas formed in brimfull craters fed by a freely migrating feeder stream. They are concave lakeward, mimicking the underlying crater wall topography. Complex deltaic geometries are defined by topset strata that steeply onlap tall foreset beds. They suggest that feeding stream floods caused rapid and comparatively large variations in lake level within the small crater lakes. Bed-specific carbonate alteration is common, and probably resulted from both influx of detrital carbonate across the playa and alteration of tephra beds by carbonate-saturated lakewaters during between flood periods of high net evaporation.  相似文献   

13.
Washover sand bodies commonly develop along microtidal coastlines in beach/barrier island or spit settings. Wave runup, usually in conjunction with an abnormally high water level, may overtop the most landward berm of the beach and the foredune crest, if one exists, to produce overwash and subsequent runoff across the more landward subaerial surface. Two main elements of the resulting deposit are the washover fan and runoff channel. Newly formed, small-scale washover deposits were examined along the Outer Banks, North Carolina, near Pt Mugu, California, and at Presque Isle (Lake Erie), Pennsylvania. The fans were formed in response to unidirectional landward transport, and the runoff channels in response to unidirectional flow usually in a landward direction, but sometimes in shore-parallel then seaward direction. Where overwash carried across the fan surface and entered a pond or lagoon, a small-scale delta (microdelta) developed. In this case, the washover fan consisted of two subfacies, the wetted, but ‘subaerial’ part of the fan and the subaqueous washover delta. Flow associated with the development of the fan and runoff channel produced distinctive sets of bedforms and internal stratification. High velocity discontinuous surges moving across the fan surface resulted in the development of a plane bed and subhorizontal to low-angle (landward dipping) planar stratification which comprised the major part of the fan. Similarly, rhomboid forms were produced by high velocity sheet flow across the fan surface. Where flow carried into a standing body of water, delta-type foreset strata developed. For this case, the lateral structural sequence was subhorizontal, planar stratification merging landward into landward dipping, delta (tabular) foreset strata. In the runoff setting, where flow became channelized and continuous, both upper-flow and lower-flow regime currents were typical. Upper-flow regime bedforms included antidunes, standing waves, and plane beds. The most commonly observed lower-flow regime bedforms included microdelta-like bars, low-amplitude bars, linguoid ripples, and sinuous-crested current ripple trains. The sets of sedimentary structures comprising modern washover sand bodies provide criteria for the identification of similar deposits in ancient sediments and for more specific interpretation of the environment.  相似文献   

14.
Baffin Bay, Texas is the flooded Last Glacial Maximum incised valley of the Los Olmos, San Fernando and Petronila Creeks along the north‐western Gulf of Mexico. Cores up to 17 m in length and high‐resolution seismic profiles were used to study the history of Baffin Bay over the last 10 kyr and to document the unusual depositional environments within the valley fill. The deposits of the Baffin Bay incised valley record two major and two minor events. Around 8·0 ka, the estuarine environments backstepped more than 15 km in response to an increase in the rate of sea‐level rise. Around 5·5 ka, these estuarine environments changed from environments similar to other estuaries of the northern Gulf of Mexico to the unusual suite of environments found today. Another minor flooding event occurred around 4·8 ka in which several internal spits were flooded. Some time after 4·0 ka, the upper‐bay mud‐flats experienced a progradational event. Because of its semi‐arid climate and isolation from the Gulf of Mexico, five depositional environments not found in the other incised‐valley fills of the northern Gulf of Mexico are found today within Baffin Bay. These deposits include well‐laminated carbonate and siliciclastic open‐bay muds, ooid beaches, shelly internal spits and barrier islands, serpulid worm‐tube reefs and prograding upper‐bay mud‐flats. Based on these unusual deposits, and other characteristics of Baffin Bay, five criteria are suggested to help identify incised valleys that filled in arid and semi‐arid climates. These criteria include the presence of: (i) hypersaline‐tolerant fauna; (ii) aeolian deposits; and (iii) carbonate and/or evaporite deposits; and the absence of: (iv) peat or other organic‐rich deposits in the upper bay and bay‐margin areas; and (v) well‐developed fluvially dominated bayhead deltas.  相似文献   

15.
ABSTRACT Lower Pliocene temperate carbonates exhibit landward‐downlapping beds at the southern margin of the Carboneras Basin in south‐eastern Spain. This rarely documented stratal geometry resulted from the accumulation of bedded bioclastic carbonate sand and gravel by longshore currents along a spit platform located a few hundred metres from the palaeoshoreline. The top of the spit platform was covered by shoals that extended over a gently dipping ramp inclined to the north. On the landward slope of the spit, sediments washed over from the shoal area were deposited in parallel‐laminated beds with a southward dip of 8–11°. These beds aggraded and retrograded after an increase in accommodation space, probably related to an Early Pliocene eustatic sea‐level rise. As a result, the beds downlap onto the underlying unconformity surface in a shoreward direction. Eventually, the depression between the shoreline and the spit platform was filled, and a gentle ramp became established. These Pliocene exposures in the Carboneras Basin and a similar Upper Miocene example in southern Spain suggest that landward‐downlapping stratal geometries can be expected in nearshore temperate carbonates along basin margins, and demonstrate a similarity in sedimentary dynamics to siliciclastic sands and gravels.  相似文献   

16.
The Norwich Crag of north-eastern Suffolk is mainly composed of near-shore sands representing several sequences (cycles of transgression and regression). It is difficult to separate out the different sequences but the final sequence here is well known for the localised development of beds of flint gravel that have been interpreted as the in-situ remnants of prograding beaches. While a review of the evidence supports the involvement of this sedimentary environment in the overall processes, the evidence shows that virtually only gravels associated with rip-channels represent in-situ beach gravels and that thicker gravel beds are the infill of much larger channels. From consideration of the characteristics of the large channels it is concluded that these large channels were tidal-inlets between prograding barrier islands and that the gravels were derived from the adjacent up-drift beach faces of the barrier-islands.  相似文献   

17.
The Kregnes “moraine” ridge in Gauldalen, a north-trending valley south of Trondheim, is a Gilbert-type delta formed at a Younger Dryas glacier terminus. The gravelly delta consists of a north-dipping foreset, 150 m thick, comprised of turbidites, debrisflow beds and debrisfall deposits. The bottomset consists of turbiditic sand and mud layers. The topset, 2-3 m thick, is a braided-river alluvium with local beach deposits, matching the marine limit of 175 m a.s.l. The fjord-wide delta front had an extent of 3 km and prograded over a distance of 1.5 km, in probably less than 100 years, with the delta toe climbing by 50 m against the basin's rapidly aggrading muddy floor. The delta advanced through the alternating episodes of its toe aggradation and progradation, related to the increases and decreases of the delta-slope gradient. Slope steepening led to intense sediment sloughing by chutes and occasional large-scale failures. The fjord's wave fetch was low and the wave base no deeper than 1.5-2 m, but strong storm waves occasionally reworked the delta front to a depth of 6 m. Glacitectonic deformation was limited to the system's upfjord end. Allostratigraphic analysis suggests that the proglacial system commenced its development as an ice-contact submarine fan that was deformed, quickly aggraded to the sea surface and turned into an ice-contact delta, which further evolved into the large glaciofluvial delta. The Kregnes ridge represents an episode of the ice-front re-advance due to climatic deterioration and is tentatively correlated with the Hoklingen substage.  相似文献   

18.
The 3·2 km long Rose Creek fan delta of west‐central Nevada is prograding from an active rift margin into the 32 m deep Walker Lake. A case study of the forms, processes and facies of this fan delta reveals that the proximal and medial zones mainly are of sub‐aerial origin, and the distal zone is of lacustrine origin. Pebbly to bouldery rock‐avalanche mounds >100 m thick (Facies A) and muddy to bouldery debris flow levées 0·5 to 2·0 m thick (Facies B) dominate the proximal zone, whereas mostly matrix‐supported cobbly pebbly debris flow lobes 0·1 to 1·0 m thick (Facies C) typify the medial zone. Surficial pebble lags and gully fills (Facies D) are widespread in both zones but, in exposures, comprise only partings or lenticles between debris flow units. The distal fan delta mainly consists of lakeshore to lake‐bottom tracts formed by extensive wave reworking of debris flow facies. Nearshore deposits include erosional cobbly boulder lag beaches (Facies E), pebbly constructional beaches attached at headcuts or on barrier spits (Facies F), pebbly upper shoreface (Facies G) and sandy lower shoreface (Facies H) tracts positioned lakeward of the beach, and pebbly landward‐dipping foresets (Facies I) and backshore‐pond sand and mud (Facies J) present landward of the spits. Erosional lag beaches fringe the windward north side of the fan‐delta front, attached constructional beaches characterize the central zone, and southward‐elongating barrier spits typify the leeward south side, extending from the zone of greatest projection of the fan delta into the lake. Shoreline facies asymmetry results from largely unidirectional longshore drift caused by high fetch to the north and minimal fetch to the south, combined with the arcuate shape of the fan‐delta front. The spits overlie a platform deposited below common wave base consisting of south‐east‐trending cones of pebbly Gilbert foresets (Facies K) and sandy toesets (Facies L). Typically slumped silt and mud (Facies M) fringe both this platform and lower shoreface sand in deeper water. This case demonstrates facies types and patterns that are inconsistent with the widely promoted fan‐delta facies model having a front consisting of an apron of radially directed Gilbert foresets deposited where sub‐aerial flows enter the lake. The Rose Creek fan‐delta front instead features a sharp contact between sub‐aerial and lakeshore facies formed where waves erode, sort and redistribute heterogeneous debris flow sediment into the various shallow‐to‐deep lake facies. Gilbert foresets are present only in the lee of the fan delta where sediment moving by longshore drift reaches the brink of the spit front. This facies scenario results from the infrequency of fan‐building events versus nearly constant wind‐induced waves, a scenario that, in contrast to the popular Gilbert model, probably is the norm for fan deltas. The level of Walker Lake, and thus the position of wave reworking on the Rose Creek fan delta, fluctuated over a range of ~157 m during the last 18 kyr, producing complex interfingering between sub‐aerial and lakeshore facies across a 1700 m wide radial belt, typifying a wave‐modified, freestand lacustrine fan delta.  相似文献   

19.
The depositional environments and bivalve assemblages are determined for the Upper Cretaceous Hinoshima Formation of the Himenoura Group, Kamishima, Amakusa Islands, Kyushu, Japan. The Hinoshima Formation is characterized by a thick transgressive succession that varies from incised-valley-fill deposits to submarine slope deposits with high aggradation rates of depositional systems. The incised valley is filled with fluvial, bayhead delta, brackish-water estuary, and marine embayment deposits, and is overlain by thick slope deposits.Shallow marine bivalves are grouped into five fossil assemblages according to species composition: Glycymeris amakusensis (foreset beds of a bayhead delta), Nippononectes tamurai (foreset beds of a bayhead delta), Ezonuculana mactraeformisNucula formosa (central bay), Glycymeris amakusensisApiotrigonia minor (slope), and Inoceramus higoensisParvamussium yubarensis (slope). These bivalve assemblages all represent autochthonous and parautochthonous conditions except for a Glycymeris amakusensisApiotrigonia minor assemblage found in debris flow and slump deposits. The life habitats of these bivalves and the compositions of the assemblages are discussed in terms of the ecological history of fossil bivalves of the mid- to Late Cretaceous.  相似文献   

20.
Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni–Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69–123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning.The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational–progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend.These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号