首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the δ13CPDB ranges from 2.01 to 3.34 (‰) whereas the δ18O SMOW ranges from 6.96 to 18.95 (‰). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181℃, with salinity values of 1.06 to 8.04 wt% NaCl eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42-(F-, Cl-)-H2O system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.  相似文献   

2.
On the basis of the mechanism of formation of mineral inclusions, it may be assumed that a certain relation exists between the compositions of fluid inclusions in various minerals formed at the same stage of hydrothermal activity. In order to study the genetic relationships between different minerals in the Bayan Obo iron deposit, the compositions(K~+, Na~+, Ca~+, Mg~+, F~+, Cl~+, CO_2~(2-), ΣSO_4~(2-) and pH) of inclusions in fluorite(23), hematite(13), magnetite(3), sodium pyroxene(2) and dolomite(5) from the main mine and the eastern mine were determined by using the vacuum decrepitation and leaching methods, and cluster analyses of the data on the compostions were made. The Q-mode cluster analysis indicates that some iron oxide minerals in the deposit are related to dolomite of sedimentary origin, while others are related to fluorite and sodium pyroxene--products of hydrothermal activity. The R-mode cluster analysis shows that the components of the leaching solution may be divided into two groups: one includes CO_2~(2-), Mg~(2+) and H~+(pH), which are obviously associated with dolomite; the other comprises Na~+, K~+, Ca~+, F~+, Cl~+ and SO_4~(2-), which may possibly represent the composition of hydrothermal solutions.The reaction of the Na-F-Cl solution(pH 4.72) with hematite dolomite at 300℃ and 5 × 10~7 Pa and under alternately"static and dynamic" conditions produced large amounts of hematite and fluorite and small amounts of smectite and Na(Fe) silicates, and the hematite-fluorite assemblage accords with the actual geological conditions in the deposit. From a comparison between the compositions of"static" and"dynamic" solution samples, it may be known that the flow reaction facilitates the migration of Fe, F, Ca and other components as well as Na-metasomatism(Na and Si are fixed in a solid phase).The study of the compositions of mineral inclusions and simulation experiments on hydrothermal metasomatism have provided new evidence for the hypothesis of metamorphosed-sedimentary and hydrothermal-remoulding origin of the Bayan Obo deposit, and pointed out emphatically that hydrothermal metasomatism plays an important role in the formation of the mineral deposit, particularly in the main and the east mine.  相似文献   

3.
Broken Hill ore deposition occurred during the highest geothermal gradient coeval with an event of bimodal basic-rhydacitic volcanism. The depositional environment is interpreted as an ensialic rift on the basis of the sedimentary facies, ferro- and low-K tholeiitic basalts, and bimodal basic-calc alkaline (rhyolite, rhyodacite) volcanism. The orebody is of unusual composition characterised by abundant carbonate, fluorite and fluorapatite, abundant LIL-, K- and Rb-rich premetamorphic alteration assemblages, primordial S and Pb isotopic values, Sr isotopes possibly indicating a heterogeneous source, S : Se in the magmatic range, and zoning suggestive of cooling of the ore fluid.It is suggested that in the mature stage of rifting, propagation of deep fractures suddenly devolatilized the mantle, released CO2 and other fluids which, together with basalts, ascended and caused crustal melting to form acid magmas. The resultant ore fluid exhalation and basaltic and rhyodacitic volcanism were therefore coeval. Rapid deposition of ore from a fluid of unusual composition in a basin or graben within the rift formed a deposit which is not too dissimilar in composition from a carbonatite.The composition of the associated basic rocks and younger alkaline rocks, the premetamorphic alteration assemblage, and the orebody chemistry all suggest that the Lower Proterozoic source area for the ore fluids was metasomatized mantle.  相似文献   

4.
The recently discovered Salgadinho copper deposit, 7 km NNE of S. Luis, Portugal is located in the southernmost linear belt of outcropping low metamorphic grade deformed Palaeozoic rocks (Famennian) in the SW part of the Iberian Pyrite Belt. The stratabound replacement pyrite-chalcopyrite mineralisation is present in variably altered felsic pyroclastic rocks which are overlain by pyritic graphitic shales and tuffs which have undergone alteration in the lowermost 5m. The altered pyroclastic rocks are characterised by pale green celadonitic fluoro-muscovite and, in the most intense zone of alteration, quartz, ankerite, and ore minerals are present (pyrite, chalcopyrite, sphalerite, tetrahedrite, galena, bournonite). No exhalative Cu-Zn or Zn-Pb ore has been discovered associated with the submarine volcanic stratabound Cu-rich alteration zone. Alteration of feldspars and groundmass has involved a net loss from the system and gains in Fe2+, F, H2O, Mg, Fe3+, Ca, Mn, P, Ti, S, Cu, Zn, Pb, As, Sb, Ag and Au at the expense of Si, K, Al and Na. The great enrichment of F in the altered rocks, the association of zonal alteration facies with coarse grained pyroclastic masses and the intimate association of pale green celadonitic fluoro-muscovite with mineralisation at Salgadinho and most other deposits of the Iberian Pyrite Belt represents a powerful exploration guide for submarine exhalative ores.Text of paper presented at the 26th I.G.C., Paris, July 1980  相似文献   

5.
云南白牛厂矿区古生代沉积盆地的成矿流体系统   总被引:10,自引:3,他引:7  
白牛厂矿区发育在多旋回演化的裂谷盆地之中 ,超大型银多金属矿床由中寒武世海底喷溢沉积作用形成。海底热液来源于裂谷盆地沉积物中超高压流体 ,热液属于富含 K+、SO2 -4的卤水 ,w ( Zn) /w ( Zn+Pb) <0 .7,与世界超大型 SEDEX矿床特征相似。滇东南下寒武统可能为重要的矿源层 ,该区具有良好的找矿前景  相似文献   

6.
林焕华 《物探与化探》1991,15(3):225-236
为了发挥勘查地球化学在找矿中的优势,运用类似于研究脉状热液型金属矿床地球化学特征的方法,对浙江省龙泉县八都萤石矿床进行了地球化学找矿方法的试验研究,目的是:(1),了解该类型萤石矿床在成矿作用影响下,赋存于围岩、水系沉积物及水介质中的地球化学特征;(2),了解该类型矿床的原生、次生异常特征.以期在未知区对该类矿床的找矿评价工作时提供一些地球化学方面的依据.通过研究表明:形成萤石矿床原生晕元素有:第一组F、As、Sb、Ca、Ag、Mo、Y;第二组Na、Mg、Al、K、Ti、Ba、P、Nb、Pb等.其中第一组为正异常元素(简称正晕元素);第二组为负异常元素(简称负晕元素).所有以上元素的原生晕都呈现带状特征.正晕元素的轴向分带由上到下为:F-Ca-As-Sb-Y-Ag-Mo.水系沉积物及重砂测量结果表明:在已剥蚀的萤石矿床附近的水系中,可以形成萤石重砂异常及F元素异常.萤石可做为找矿的指示矿物;F可做为找矿的指示元素.矿区水文地球化学研究结果表明:在已知萤石矿田范围内,可出现F-、Ca3+的水化学异常,该异常对于矿体富集部位及矿带的延伸方向有一定的指示意义.  相似文献   

7.
Julietta is a rich epithermal gold-silver deposit of the low-sulfidation, adularia-sericite type, located in the Cretaceous Okhotsk-Chukchi volcanic-plutonic belt 250 km northeast of Magadan. The deposit was discovered in 1989 by a regional soil geochemical survey in an area previously considered barren on the basis of a regional stream-sediment survey. The deposit has not been completely explored, but presently is in the feasibility stage; proven reserves are 26 metric tons of Au (grades averaging 23 g/t) and the Au/Ag ratio is about 1:10.

The deposit occurs on the periphery of a large volcanic-tectonic depression. Host andesite, andesite-basalt lava, corresponding subvolcanic bodies, and tuff are cut by Early Cretaceous quartz diorite stocks. Six vein zones occur in tensional and compression fissures. Ore shoots and smaller bonanzas comprising most of the gold reserves are located in flexures of the ore-host fissures. Ore mineralization was preceded by intense voluminous propylitization and linear sericitization (sericite + quartz + pyrite + ankerite). Orebodies occur within the low-temperature propylite (pyrite + calcite + quartz + chlorite + hydromica). Colloform-crustiform banded textures are commonly observed in the ore. Most of the ore minerals occur within thin, cyclically repeated, fine-grained bands of a hydromica-carbonate-adularia-quartz aggregate. Ore-bearing, fine-grained bands probably formed by periodic fracturing of the veins, whereas barren bands were deposited in relatively quiet conditions. “Micro-stalactites” and other gravitational textures demonstrate that minerals grew in open spaces. Ore-host structures gradually opened during mineralization.

Gangue minerals are primarily quartz, various carbonates (calcite, dolomite, Fe-dolomite [Mg:Fe>2:1], parankerite [Mg: Fe = 2:1], ankerite [Mg: Fe = 1:1], and mesitite [Mg: Fe = 1:1]), and minor hydromica and adularia. Major ore minerals include pyrite, sphalerite, chalcopyrite, galena, tetrahedrite, silver sulfosalts, native gold, and custelite (Au: Ag = 9: 1). Ore mineralization occurred in two stages-an early, post-volcanic stage and a late, post-granitoid stage. The early stage contains most of the precious metals and includes two substages-(1) gold-polymetallic (200 to 260° C) and (2) gold-silver-sulfosalt (90 to 200° C). The late stage also includes two substages-(1) carbonate-rhodonite-quartz (260 to 380° C) and (2) postore quartz-carbonate. Fluid-inclusion homogenization temperatures demonstrate complex temperature zoning. Fluid composition was mainly aqueous, with Cl?, HCO3?, Na+, K+, Ca2 +, and a salinity less than 4 to 9%. The isotopic age of the deposit is 136 ± 3 Ma by the Rb-Sr method on adularia. The 87Sr/86Sr ratio is about 0.7075 ± 0.0005, indicating a mixed crust-mantle source of the vein matter. Chloride complexes transported gold and silver. The gas composition of the fluid suggests a near-surface, “closed” paleohydrothermal system. A major ore-forming factor could have been high seismic activity related to intrusion of the subvolcanic bodies. Breccias and multiphase veinlets may be related to relatively large-magnitude earthquakes, whereas cyclically banded ores may reflect local pH variations caused by smaller earthquakes.  相似文献   

8.
The Fengjia barite–fluorite deposit in southeast Sichuan is a stratabound ore deposit which occurs mainly in Lower Ordovician carbonate rocks. Here we present results from fluid inclusion and oxygen and hydrogen isotope studies to determine the nature and origin of the hydrothermal fluids that generated the deposit. The temperature of the ore‐forming fluid shows a range of 86 to 302 °C. Our detailed microthermometric data show that the temperature during mineralization of the fluorite and barite in the early ore‐forming stage was higher than that during the formation of the calcite in the late ore‐forming stage. The salinity varied substantially from 0.18% to 21.19% NaCl eqv., whereas the density was around 1.00 g/cm3. The fluid composition was mainly H2O (>91.33%), followed by CO2, CH4 and traces of C2H6, CO, Ar, and H2S. The dominant cation was Na+ and the dominant anion Cl, followed by Ca2+, SO42‐, K+, and Mg2+, indicating a mid–low‐temperature, mid‐low‐salinity, low‐density NaCl–H2O system. Our results demonstrate that the temperature decreased during the ore‐forming process and the fluid system changed from a closed reducing environment to an open oxidizing environment. The hydrogen and oxygen isotope data demonstrate that the hydrothermal fluids in the study area had multiple sources, primarily formation water, as well as meteoric water and metamorphic water. Combined with the geological setting and mineralization features we infer that the stratabound barite–fluorite deposits originated from mid–low‐temperature hydrothermal fluids and formed vein filling in the fault zone.  相似文献   

9.
The Shuangjiangkuo-Jiangjunmiao fluorite ore deposit occurs in Early Yenshanian granites in the fold system of south China. The average homogenization temperature of inclusions in fluorite is 250°C. The contents of CO2 and CH4 in the inclusions tend to increase from southeast to northwest as well as in the vertical direction. Liquid in the inclusions is composed mainly of CaO, F and Cl with minor SO 4 2 . All this has contributed a lot to the formation of fluorite as well as to wall-rock alteration. This ore deposit is evidenced to be mesothermal in origin.  相似文献   

10.
The dating of fluid inclusions of quartz yields an Ar-Ar isochrone age of 320.4±6 Ma. Three types of fluid inclusions have been identified with the homogenization temperature ranging from 157℃ to 362℃. The homogenization temperature consists of two groups. The first group varies from 157℃ to 166℃, and the second from 232℃ to 362℃. Their chemical composition is dominated by Na+-Ca2+-Mg2+ and Cl-. The relative concentration of ions is characteristic by Na+>Ca2+>K+>Mg2+ and C1->SO42-> F-. The δD and δ18O values indicate that the ore-forming fluid originates from mixing of multi-source water. The Sarkobu gold deposit has experienced two mineralization stages: gold was enriched during the volcanic-exhalative-sedimentary process in the early stage, while the gold deposit was finally formed under compression-shearing during the orogenic period.  相似文献   

11.
It is shown that the reaction ability of metal cations of ore minerals in Fe–Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43–0.60 and 2.08–2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.  相似文献   

12.
The Itataia phosphate-uranium deposit is located in Santa Quitéria, in central Ceará State, northeastern Brazil. Mineralization has occurred in different stages and involves quartz leaching (episyenitization), brecciation and microcrystalline phase formation of concretionary apatite. The last constitutes the main mineral of Itatiaia uranium ore, namely collophane. Collophanite ore occurs in massive bodies, lenses, breccia zones, veins or episyenite in marble layers, calc-silicate rocks and gneisses of the Itataia Group.There are two accepted theories on the origin of the earliest mineralization phase of Itataia ore: syngenetic (primary) – where the ore is derived from a continental source and then deposited in marine and coastal environments; and epigenetic (secondary) – whereby the fluids are of magmatic, metamorphic and meteoric origin. The characterization of pre- or post-deformational mineralization is controversial, since the features of the ore are interpreted as deformation.This investigation conducted isotopic studies and chemical analyses of minerals in marbles and calc-silicate rocks of the Alcantil and Barrigas Formations (Itataia Group), as well as petrographic and structural studies. Analysis of the thin sections shows at least three phosphate mineral phases associated with uranium mineralizaton: (1) A prismatic fluorapatite phase associated with chess-board albite, arfvedsonite and ferro-eckermannite; (2) a second fluorapatite phase with fibrous radial or colloform habits that replaces calcium carbonate in marble, especially along fractures, with minerals such as quartz, chlorite and zeolite also identified in calc-silicate rocks; and (3) an younger phosphate phase of botryoidal apatite (fluorapatite and hydroxyapatite) related with clay minerals and probably others calcium and aluminum phosphates. Detailed isotopic analysis carried out perpendicularly to the mineralized levels and veins in the marble revealed significant variation in isotopic ratios. Mineralized zones exhibit a decrease in δ13C and δ18O isotope values and a higher 87Sr/86Sr ratio toward the center of the vein. In conjunction with petrographic studies, these changes contesting the hypothesis of a sedimentary origin for uranium and suggest a radiogenic Sr input by alkaline to peralkaline fluids from fertile granites of the end of Brasiliano/Pan-African orogeny, located outside the deposit. The origin of the phosphorous is associated with phosphorite deposits in the same depositional environment of the neoproterozoic supracrustal quartz-pelite-carbonate sediments of the Itataia Group.Considering the studies conducted here and available geological data, three main mineralizing events can be identified in Itataia: (1) an initial high temperature event connected with a sodium metasomatism-related uranium episode, taking place in Borborema Province and its African counterpart; (2) a second lower temperature stage, consisting of a multiphase cataclastic/hydrothermal event limited to fault and paleokarst zones; and (3) a third and final event, developed in frankly oxidizing conditions. The last two involving mixing of hydrothermal and meteoric fluids.  相似文献   

13.
内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因   总被引:6,自引:1,他引:6  
内蒙古自治区黄岗梁矿床是大兴安岭中南段的一个大型Sn-Fe多金属矿床,燕山期火山侵入岩广泛出露,通过对矿床地球化学特征的系统研究,并结合矿床地质特征,得出的主要研究成果为:①与含微细浸染胶状锡的磁铁矿层共生的层状夕卡岩与海底火山活动关系密切,是一种很具特色的喷流岩;②REE地球化学特征表明,该矿床层状夕卡岩与典型岩浆热液接触交代夕卡岩存在较大差异,而与现代海底热流体和喷流型矿床及其共生的热水沉积岩有较大的相似性,应属热水喷流成因;③层状夕卡岩的碳、氧同位素组成关系可与许多沉积喷流型块状硫化物矿石及其共生的喷流岩相对比,暗示了两者具有相似的形成机理。  相似文献   

14.
A wide variety of unusual rock types, exhalites, are commonly associated with or host to exhalative mineralisation within the Willyama Supergroup. Chondrite normalised REE patterns of feldspar-, gahnite-, calcite-, magnetite-and garnet-rich lithologies in the vicinity of stratiform Broken Hill-type Pb-Zn-Ag mineralisation are LREE and Eu enriched similar to the REE patterns of pure metalliferous sediments and hydrothermal fluids of the East Pacific Rise and the Red Sea. In contrast, tourmaline-, garnet-, amphibole-, feldspar- and gahnite-rich exhalites in strike extension of Broken Hill-type orebodies possess LREE enrichments and negative Eu anomalies and also HREE enrichments and negative Ce anomalies. These REE patterns are the result of decreasing temperatures of the hydrothermal fluids, changing oxidation-reduction conditions and increasing influence of basic volcanism with increasing distance from the sulphide mineralisation.  相似文献   

15.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

16.
The Don Sixto mining area in Mendoza province, central‐western Argentina, contains an epithermal low sulfidation Au–Ag deposit. It is a small deposit (~4 km2), with a gold resource of 36 t. In Don Sixto, ore minerals are disseminated in the hydrothermal quartz veins and hydrothermally altered volcanic‐pyroclastic rock units of Permian–Triassic age. On the basis of the texture, ore mineral paragenesis and cross cutting relationship of gangue minerals, seven stages of mineralization were recognized and described. The first six stages are characterized by quartz veins with minor amounts of base metal minerals and the last stage is represented by fluorite veins with minimal quantities of base metal minerals; the precious metal mineralization is mainly related to the fourth stage. The hydrothermal veins exhibit mainly massive, crustiform and comb infilling textures; the presence of bladed quartz replacement textures and quartz veins with adularia crystals are indicative of boiling processes in the system. Fluid inclusion and complementary stable isotope studies were performed in quartz, fluorite, and pyrite samples from the vein systems. The microthermometric data were obtained from primary, biphasic (liquid‐vapor) fluid inclusion assemblages in quartz and fluorite. The maximum values for salinity and homogenization temperature (Th) came from the stage IV where quartz with petrographic evidence of boiling has average values of 4.96 wt% NaClequiv. and 286.9°C respectively. The lower values are related to the last stage of mineralization, where the fluid inclusions in fluorite have average salinities of 1.05 wt% NaClequiv. and average homogenization temperatures of 173.1°C. The oxygen and sulfur isotopic fractionation was analyzed in quartz and pyrite. The calculated isotopic fractionation for oxygen in the hydrothermal fluid is in the range of δ18OH2O = ?6.92 up to ?3.08‰, which indicates dominance of a meteoric source for the water, while sulfur reaches δ34SH2S = 1.09‰, which could be reflecting a possible magmatic, or even a mixed source.  相似文献   

17.
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation  相似文献   

18.
Sixteen unpublished analyses of Broken Hill manganese silicates (two pyrox‐mangite, one rhodonite, four hedenbergite, and nine bustamite) from the papers of the late Dr W. T. Schaller are presented. They have been complemented with additional analyses by the electron microprobe to define the compositional fields of these minerals. Data are provided on the relationship of these minerals with tephroite and garnet. The occurrence of roepperite (zincian tephroite) at Broken Hill is discredited, and its validity is doubtful. Dannemorite from Broken Hill has a composition close to Mn2(Fe,Mg)5Si8O22(OH)2, and can be considered a valid amphibole subspecies.  相似文献   

19.
Oxygen isotope fractionation in the zinc oxides has been calculated by means of the modified increment method. The results suggest that zincite is slightly enriched in 18O relative to the franklinite of the spinel-type structure but considerably depleted in 18O relative to the franklinite of the inverse spinel-type structure. The zinc oxides are significantly depleted in 18O relative to water under hydrothermal and metamorphic conditions. The oxygen isotope analyses of mineral pairs including the zinc oxides and the common gangue minerals such as calcite and quartz can constitute a sensitive isotope geothermometer. Application of oxygen isotope geothermometry to natural assemblages is attempted for the calcite-zinc ore mineral pairs from the Sterling Hill deposit in USA. The results indicate that the temperature of the zinc mineralization may be in the range from 410° to 630 °C and thus lower than the metamorphic temperatures of granulite facies. A metamorphic fluid could have been involved in the formation of the zinc ore minerals. Franklinite would structurally be an inverse spinel in the infancy of its formation, and thus could have originally evolved from Zn2 + substitution to Fe2 + of magnetite at the high temperatures.  相似文献   

20.
江西永平铜矿矽卡岩矿物特征及其地质意义   总被引:4,自引:3,他引:1  
田明君  李永刚  万浩章  张宇  高婷婷 《岩石学报》2014,30(12):3741-3758
永平铜矿含矿岩石主要为绿帘石透辉石石榴石矽卡岩,这种岩石类型是与斑岩体有关的矽卡岩铜矿的典型赋矿岩石。通过对这一主要赋矿矽卡岩的研究,我们发现石榴石生长分为两个阶段:(1)早期石榴石:主要分布在石榴石颗粒核部,XAdr=1.0,主要以钙铁榴石为主,说明早期流体中可能含有较多的铁,是在较氧化条件下形成的;(2)晚期石榴石,沿石榴石裂隙重新成核或者在靠近流体通道的早期石榴石表面生长,出现震荡环带,XAdr=0.46~0.99,为钙铁-钙铝石榴石系列。石榴石发生变化的期间也形成新的矿物,如绿帘石、萤石、方解石和石英等。共存石榴石和绿帘石矿物中存在Fe3+-Al3+之间的替代,说明流体的氧逸度、组分浓度或aFe3+/aAl3+可能发生了变化。金属矿物也可能是在这一阶段形成的。永平铜矿矽卡岩从接触带到大理岩空间上有分带现象。从岩体到围岩的变化趋势为:石榴石含量减少,颜色存在红棕色-棕色-棕绿色-黄绿色-浅黄色的变化趋势;矿石品位降低,这与石榴石中Al2O3含量的变化较一致。我们认为这种变化是含矿热液对早期矽卡岩进行再交代改造的结果,表现为石榴石和绿帘石中Fe3+-Al3+含量的变化,并将Cu等金属沉淀下来。根据矽卡岩矿物的这些特征,在矿床勘探时,可依据棕色石榴石来追踪主矿体的位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号