首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   

2.
ARM (anhysteretic remanence)/SIRM (saturation isothermal remanence) and TRM (thermoremanence)/SIRM were measured as a function of the concentration (volume fraction) of single-domain magnetite (3 × 10?6 ? C ? 2 × 10?2), ARM/SIRM increases with decreasing concentration, showing that there is magnetic interaction between fine particles. The role of magnetic interaction in TRM acquisition is also important at higher concentrations of magnetite (C ? 0.1%), where the value of TRM/SIRM increases with decreasing concentration. It is only for concentrations ofC ? 0.1% that the value of TRM/SIRM is fairly constant and interactions among magnetite grains seem to be ignored. The ratio TRM/ARM decreases from seven to almost unity as the concentration of magnetite decreases.  相似文献   

3.
Thermal diffusivity, k, of three lunar rocks (10049 and 10069; Type A, Apollo 11 and 14311; Apollo 14) and a terrestrial basalt (alkaline olivine basalt, Oki-do?go, Japan) was measured under one atmosphere and in vacuum conditions (10?3 ~ 10?5 mmHg) in the temperature range from 85 to 850°K. The semi-empirical curve of k =A + B/T +CT3 is fitted to the data in each condition. The porosity of rocks strongly affects the thermal diffusivity at low temperature ( T ? 500°K) in vacuum condition. At 150°K, thermal diffusivity of lunar rocks with porosity of 5.5% (10049) and 11% (10069) at one atmosphere is about 1.7 and 3.2 times of that in vacuum, respectively. The difference between the values at one atmosphere and those in vacuum decreases as the temperature increases. Measurements of k should be made at gas pressures at least lower than 10?3 mmHg to estimate the value under lunar surface conditions.  相似文献   

4.
Magnetic carriers in remagnetized Cretaceous granitic rocks of northeast Japan were studied using paleomagnetism, rock magnetism, optical microscopy and scanning electron microscopy (SEM) by comparison with unremagnetized granitic rocks. The natural remanent magnetization (NRM) of the remagnetized rocks is strong (0.3–1.7 A/m) and shows a northwesterly direction with moderate inclination (NW remanence), whereas the unremagnetized rocks preserve weak NRM (<0.5 A/m) with westerly and shallow direction (W remanence). Although thermal demagnetization shows that both NRMs are carried by magnetite, the remagnetized rocks reveal a higher coercivity with respect to alternating field demagnetization (20 mT相似文献   

5.
Plagioclase in cataclastic anorthosite 67075 occurs as angular matrix grains and as recrystallized clasts of micro-anorthosite. Olivines are Fe-rich and fall into two compositional groupings. Large grains of pyroxene show exceptionally well-developed exsolution lamellae analogous to those observed in pyroxenes from layered complexes. The low-Ca component in both pigeonites and augites shows varying degrees of inversion to orthopyroxene. The lattices of host and lamellae may deviate slightly (up to 2°) from the ideal orientation. Very slow cooling from magmatic temperatures is required to produce the coarse exsolution textures and inversion features. Augite macrocrystals are distinctly subcalcic indicating crystallization at temperatures around1100 ± 50°C while host-lamellae pairs and small grains in lithic clasts and matrix indicate reequilibration on a micron scale to temperatures less than 800°C. Pyroxene compositions tend to cluster into two groups both of which are among the most Fe-rich reported for highland pyroxenes. Ti and Al contents of pyroxenes are very low and Ti, Cr, and Mn follow well-established magmatic differentiation trends. The high Cr content may reflect low?O2 conditions and/or early crystallization of olivine and plagioclase.The87Sr/86Sr ratios in lunar anorthosites are the lowest reported for any lunar rock. It is likely that anorthosites formed as cumulates during the major differentiation episode which occurred prior to~4.3AE. Recrystallization features are common and39Ar/40Ar ages cluster around 4.0 AE. This may be the result of the intense bombardment prior to 4.0 AE which caused repeated cycles of in-situ fracturing and granulation followed by recrystallization. The low siderophile element content and the inferred slow cooling indicate a plutonic source region (10km) not frequently plumbed by impact events. The Fe-rich silicates indicate crystallization from a melt at an advanced stage of fractionation. However, the low REE abundances are not consistent with late-stage crystallization. Plagioclase apparently crystallized relatively early and was concentrated by flotation and/or convection currents while the mafic minerals crystallized from a fractionated trapped liquid. The chemical, isotopic, and mineralogical data place stringent constraints on the nature of genetically related rocks and the relationship of anorthosites to other members of the ANT suite does not appear to be one ofsimple fractionation. The data presented in this paper are consistent with the Taylor-Jake?model of lunar evolution.  相似文献   

6.
Grain sizes in the range (10−4 to 10−1 mm) are common in some rocks. Because thermal and/or chemical remanent magnetization of hematite in this range approaches intensities of single domain (SD) magnetite, careful exploration of this transition, may serve to develop new applications in rock magnetism that relate to magnetic anomaly source identification, and various paleomagnetic and grain size-dependent investigations.Grain size-dependent magnetic behavior of hematite reveals a SD–multidomain (MD) transition at 0.1 mm. This transition is recognized by variation in magnetic coercivity and susceptibility and is related to an anomaly in remanence recovery when cycling through the Morin transition. The coercivity decrease with increasing grain size occurs much more gradually above 0.1 mm than below this value. Magnetic susceptibility of the grains smaller than 0.1 mm has negligible dependence on the amplitude of the applied alternating magnetic field. For the larger grains a new amplitude-dependent susceptibility component is observed. The grain size of 0.1 mm is also associated with loss of most of the remanence when cycling through the Morin transition. This behavior is ascribed to a transition from the metastable SD to the MD magnetic state. The increase in magnetized volume causes the demagnetizing energy to destabilize the SD state, resulting in a transition where the demagnetizing energy is reduced by nucleation of the domain wall for grains larger than 0.1 mm. The 0.1 mm transition has no significant effect on shape of the temperature-dependent coercivity and saturation magnetization.  相似文献   

7.
A method is proposed for evaluating rock hydraulic conductivity (k x;y , LT?1) in grid model blocks to be used in finite-difference simulation of mass exchange in gypcified fractured-porous rocks containing groundwater. The values of k x and k y were determined taking into account the dominating form of transport (advection or transverse dispersion), contributing most to gypsum dissolution. The method was used to simulate groundwater flow in a vertical section of gypsified rocks in the base of the dam at the Lower-Kafirniganskii Hydropower System. The changes in rock permeability in the base of the dam were used to evaluate whether there is a need to take seepage-control measures (cement-grout curtain, blanket, and a gypsum fill over the blanket). A leaching zone was found to form near the curtain and blanket during the simulation period (100 years) under background seepage conditions. In this period, the total water flow in the lower pool can increase by no more than 10–15%. Under such conditions, the “seepage-control” measures can enhance the reliability of the dam at the Lower-Kafirniganskii Hydropower System.  相似文献   

8.
The amount of trapped inert gases present in rock 66095, as well as the elemental and isotopic composition of these gases can be explained by “contamination” of this rock - on the lunar surface - with as little as 0.2% of fines There is no compelling evidence that these gases come from the impact of a comet or a carbonaceous meteorite on the Moon, or that they represent genuine primordial lunar gas.The21Ne radiation age of 66095 is (1.1 ± 0.5) × 106yr, which strongly suggests that this rock was excavated by the South Ray Crater event.  相似文献   

9.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

10.
Apollo 15 and 16 subsatellite measurements of lunar surface magnetic fields by the electron reflection method are summarized. Patches of strong surface fields ranging from less than 14° to tens of degrees in size are found distributed over the lunar surface, but in general no obvious correlation is observed between field anomalies and surface geology. In lunar mare regions a positive statistical correlation is found between the surface field strength and the geologic age of the surface as determined from crater erosion studies. However, there is a lack of correlation of surface field with impact craters in the mare, implying that mare do not have a strong large-scale uniform magnetization as might be expected from an ancient lunar dynamo. This lack of correlation also indicates that mare impact processes do not generate strong magnetization coherent over ~ 10 km scale size. In the lunar highlands fields of >100 nT are found in a region of order 10 km wide and >300 km long centered on and paralleling the long linear rille, Rima Sirsalis. These fields imply that the rille has a strong magnetization (>5 × 10?6 gauss cm3 gm?1 associated with it, either in the form of intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock. However, a survey of seven lunar farside magnetic anomalies observed by the Apollo 16 subsatellite suggests a correlation with inner ejecta material from large impact basins. The implications of these results for the origin of lunar magnetism are discussed.  相似文献   

11.
Analyses of rock-magnetic properties of Neogene sediments of the Taxihe section, northern Tianshan Mountains, show that the section can be classified into three categories including lacustrine facies, fluvial facies and alluvial facies, which correspond to the lower, middle and upper of the Taxihe section respectively. The magnetic minerals of the lacustrine facies may be affected by the process of weath- ering, lithogenesis and biolithogenesis besides the source of the sediments. The natural remanence intensities are between 10-3 A/m and 10-2 A/m. The minerals are dominated by magnetite and the high coercive magnetic mineral may be goethite. The magnetic grains are the mixture of PSD SD or SD SP. The natural remanence intensities of the strata of fluvial facies are between 10-2 A/m and 10-1 A/m, about ten times that of the lacustrine facies. The magnetic minerals are mainly magnetite and hematite, and the magnetic grains are mainly PSD. The characteristic remanence (ChRM) carriers are magnetites. In the alluvial facies, the natural remanence intensities are mostly less than 1×10-2 A/m. The magnetic minerals of the series are dominated by magnetite and hematite, almost the same as the fluvial facies. But the difference is that most of the stepwise demagnetization can reveal two components and the ChRM carriers are hematites. The magnetic grains are PSD in terms of the hysteresis parameters.  相似文献   

12.
The primary δD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about ?50 to ?85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not “juvenile”, but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have δ18O = +7.0 to +10.0, probably indicating significant involvement of high-18O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have δ18O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low δ18O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low-18O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (δD as low as ?180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have δD values lower than ?120. The lowering of δD values commonly correlates with re-setting of K-Ar ages, and in the Idaho batholith two broad zones (10,000 km2) can be defined where δD biotite <?100 and K-Ar “ages” have all been re-set to values less than 60 m.y., suggesting that the Ar loss was caused by the meteoric-hydrothermal circulation systems. In certain Precambrian batholiths, a much different type of very low-temperature, regional alteration by surface-derived waters took place over an extended period long after emplacement, producing “brick-red” feldspars and markedly discordant Rb-Sr isochron “ages”.  相似文献   

13.
The Gd isotopic composition in 19 lunar rock and soil samples from three Apollo sites is reported. The analytical techniques and the high precision mass spectrometric measurements are discussed. Enrichments in158GdO/157GdO due to neutron capture range up to 0.75%. Integrated ‘thermal’ neutron fluxes derived from the isotopic anomalies of Gd are compared with spallation Kr data from aliquot samples to construct a model which gives both average cosmic-ray irradiation depths and effective neutron exposure ages (Tn) for some rocks. In the case of rock 12053, this yields an average sample location of ∼300 g/cm2 below the lunar surface and an effective irradiation age of ∼230 my, compared to 99 my obtained by the81Kr-Kr method. Rock 14310 is the first lunar sample where Kr anomalies due to resonance neutron capture in Br are observed. A81Kr-Kr exposure age of 262 ± 7 my is calculated for this rock.  相似文献   

14.
The thermal conductivity of a simulated Apollo 12 lunar soil sample was measured with a needle probe under vacuum. The result showed that the sample, with bulk densities of 1.70–1.85 g cm?3 held in a vertical cylinder (2.54 cm in diameter and 6.99 cm long) has a thermal conductivity ranging from 8.8 to 10.9 mW m?1 K?1. This is comparable to the lunar regolith's thermal conductivity as determined in situ. Besides the dense packing of the soil particles, an enhanced intergranular thermal contact, due to the self-compression of the sample, is necessary to raise the sample's thermal conductivity from the level of loose soil (< 5 mW m?1 K?1) to that of the lunar regolith deeper than 35 cm (~ 10 mW m?1 K?1). A model of the lunar regolith, a thin layer of loose soil resting on a compacted self-compressed substratum, is consistent with the lunar regolith's surface structure as deduced from an observation of the lunar surface's brightness temperature. Martian regolith surface structure is similar, except that its surface layer may be missing in places because of aeolian activity. Measurements of thermal conductivity under simulated martian surface conditions showed that the thermal properties of loose and compacted soils agreed with the two peak values of the martian surface's thermal inertia as observed from “Viking” orbiters, suggesting that drifted loose soil and exposed compacted soil are responsible for the bimodal distribution of the martian surface's thermal inertia near zero elevation. For compacted soil exposed to the martian surface to have the same thermal conductivity as that buried under the surface layer, a cohesion of the soil particles must be assumed.  相似文献   

15.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   

16.
An assessment of local and regional isotopic equilibrium in the mantle   总被引:2,自引:0,他引:2  
The assumption of local equilibrium during partial melting is fundamental to the interpretation of isotope and trace element data for mantle-derived rocks. If disequilibrium melting is significant, the scale of the chemical and isotopic heterogeneity in the mantle indicated by the data could be as small as the grain size of the mantle rock, and the isotope data themselves are then of doubtful value to the understanding of mantle processes. To assess the scale of isotopic heterogeneity in a partially molten asthenosphere we review the Sr isotopic data of volcanic rocks from oceanic regions and the available experimental data on diffusion kinetics in minerals and melts similar to those existing in the mantle. Although diffusion data are scarce and afflicted with uncertainties, most of the diffusion coefficients for cations in mantle minerals at temperatures of 1000–1200°C appear to be greater than 10?13 cm2 s?1. Sr diffusion in liquid basalt is more rapid, with diffusion coefficients of D = 10?7 to 10?6cm2s?1 near 1300°C. Simple model calculations show that, with these D values, a fluid-free mantle can maintain a state of disequilibrium on a centimeter scale for periods of 108 to 109 years. The state of disequilibrium found in many mantle-derived xenoliths is thus easily explained. A partially molten mantle, on the other hand, will tend to equilibrate locally in less than 105 to 106 years. The analytical data on natural rocks likewise indicate that the inhomogeneities are both old (>FX1.5 b.y.) and regional in character and that the consistent isotopic difference between ocean island and ocean floor volcanics cannot be explained by small-scale heterogeneity of the source rock.  相似文献   

17.
Absolute concentration of normal alkanes (n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum (GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms (TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen “A” together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone, coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed: n-alkanes >110 μg·mg?1, aromatics <15 μg·mg?1, and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes <82 μg·mg?1, aromatics >40 μg·mg?1, and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.  相似文献   

18.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   

19.
Magnetic hysteresis loops and the derived hysteresis ratios RH and RI are used to classify the various natural dilute magnetic materials. RI is the ratio of saturation isothermal remanence (IR) to saturation (IS) magnetization, and RH is the ratio of remanent coercive force (HR) to coercive force (HC). The RH and RI values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both RH and RI are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites and thermochemically-altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of RH and RI for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.  相似文献   

20.
Detailed bathymetric and magnetic data, complemented by nine dredge stations, define the eastern and western limits of a belt of high-amplitude magnetic anomalies associated with the Galapagos hot spot. The hypothesis of “magnetic telechemistry” was tested and locally confirmed. High amplitudes correspond to high remanence, susceptibility, FeOT, TiO2, and presumably titanomagnetite concentration. The average remanence of surface samples in the high-amplitude zone is 0.027 emu/cm3 (range, 0.009–0.085 emu/cm3), about 4 times that of the normal-amplitude zone. Magnetic amplitudes are only 2–2.5 times higher, however. If the greater TiO2/FeOT ratio of high-amplitude zone basalts also characterizes the titanomagnetites, remanence in the high-amplitude zone may fall off more rapidly with depth in the crust as a result of reheating. Alternatively, small pillows of high remanence are more common than larger pillows at the top of the high-amplitude zone crust; FeTi basalt may also be concentrated in the upper part of the crust. Anomaly amplitudes are highest at the ends of the zone, particularly in the east. As asthenosphere crystal slushes presumably flow away from the Galapagos plume, progressive crystal fractionation may enrich residual magmas in FeOT and TiO2. The Galapagos FeTi zone terminates abruptly against transform fractures at both ends, perhaps because subaxial flow is dammed at the transforms. The FeTi-producing crystal slushes have advanced east and west at speeds up to 10 cm/yr since they first appeared at the spreading axis at least 6.6 m.y. B.P. Their progressive advance was connected with the progressive southward jumps of the spreading axis east of the Galapagos hot spot, and northward jumps to the west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号