首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The polyphase evolution of the Seridó Belt (NE-Brazil) includes D1 crust formation at 2.3–2.1 Ga, D2 thrust tectonics at 1.9 Ga and crustal reworking by D3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D2 and D3 events were used to constrain the tectono-thermal evolution of the belt. D2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600–650 °C) through grain boundary migration, subgrain rotation and operation of quartz c-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from c-prism to positive and negative a-rhombs. During D3, enhancement of ductility by dissipation of heat that came from syn-D3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from a-prism to a-basal slip indicates a thermal path from 600 to 350 °C. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Seridó Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths.  相似文献   

2.
MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).  相似文献   

3.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

4.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

5.
The microstructural variation with a progressive change in the strain pattern are described in the rocks occurring across the footwall of the Main Central Thrust (MCT) in an area of the Garhwal Himalaya. In the western Garhwal Himalaya, the MCT has brought upper amphibolite facies metamorphic rocks southward over the greenschist facies rocks of the Lesser Himalaya. The progressively increasing flattening strain towards the MCT changes either to plane strain or in some cases to constrictional strain. This change in strain is well recorded in the microstructures. The zone dominated by flattening strain is expressed as bedding parallel mylonites. The grain reduction in this zone has occurred by dynamic recrystallization and quartz porphyroclasts were flattened parallel to the mylonite zone. The maximum finite strain ratio observed in this zone is 2.2:1.8:1. The zone, where the flattening strain changes either to plane strain or constrictional strain, record an increase in finite strain ratio up to 3.8:1.9:1. This zone represents deformation fabrics like S–C microstructures simultaneously developed during mylonitization in an intense ductile shear zone. The above zone is either near the MCT or adjacent to crystalline klippen occupying the core of the synforms in the footwall of the MCT. The microstructural evolution and the finite strain suggest that the MCT has evolved as the result of superposition of southward directed simple shear over the flattening strain. The simple shear has played an active role in the rapid translation which followed the mylonitization at deeper levels.  相似文献   

6.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   

7.
张青  李馨 《岩石学报》2021,37(4):1000-1014
在过去的二十年里,EBSD (Electron Backscattered Diffraction),即电子背散射衍射测试技术,已广泛应用于韧性组构分析,成为变形运动学、流变学分析的常规手段。该方法主要应用于流变条件下矿物晶轴组构定向性分析,以判定流变剪切指向、对比应变强度、估算变形温度。理论上讲,EBSD法适用于所有矿物的全部晶轴定向的分析测试。然而鉴于天然变形的复杂性,笔者建议EBSD分析应以石英,特别是经历了动态重结晶的石英条带为组构分析的主要对象。长期以来,石英晶轴组构的不对称性被视作独立的剪切指向标志。然而,近年来基于天然变形和一般剪切实验的研究结果表明,塑性流变的剪切指向含义应为多重流变剪切指向标志综合判别比对的结果。尽管在提出之初,石英的轴组构开角被视作独立可靠的变形温度计(Kruhl,1998)。然而限于天然变形的复杂性,特别是对变质与变形阶段的对应、耦合的认识;尽管石英变形滑移系及石英晶轴组构开角可为动力变质温度提供重要的参考,但是石英晶轴组构开角并非独立的变形温度计。  相似文献   

8.
The western Dabie orogen (also known as the Hong'an block) forms the western part of the Dabie–Sulu HP–UHP belt, central China. Rocks of this orogen have been subjected to pervasive ductile deformation, and include numerous quartz schists and felsic mylonites cropping out in ductile shear zones. Quartz textures in these mylonites contain important clues for understanding the movement sense of late-collisional extrusion and exhumation of high-pressure–ultrahigh-pressure (HP–UHP) rocks from the lower crustal level to the upper crustal level during Middle Triassic and Early Jurassic. The orientation and distribution of quartz crystallographic axes were used to confirm the regional shear sense across the orogen. The asymmetry of c-axis patterns consistently indicates top-to-the-southeast thrusting across the orogen in early structural stages. Later stages of deformation show different senses of movement in northern and southern parts of the orogen, with top-to-the-northwest sinistral shearing recorded in rocks north of the Xinxian HP–UHP eclogite-facies belt, and top-to-the-southeast dextral shearing south of the same unit.Based on our study on quartz c-axis fabrics and marco- to micro-scale structures, simultaneous southeastward shearing within a large part of the orogen and normal faulting north of the Xinxian HP–UHP unit is explained by upward extrusion in early stages of deformation. The extrusion process has been attributed to syn- and late-collisional processes, accounting for some earlier deformation in the western Dabie orogen such as metamorphic sequences around the core of the Xinxian HP–UHP eclogite-facies unit. Much higher pressure of deformation is also indicated in the aligned glaucophane and omphacite from blueschist and eclogite in the field. An orogen-parallel eastward extrusion of the Xinxian HP–UHP eclogite-facies unit, however, occurred diachronously in later stages of deformation. Therefore, a tectonic model combining an early upward extrusion with a later eastward extrusion is presented. Two different stages and types of extrusion for exhumation of HP–UHP rocks are suitable to all of east central China. Geochronological data shows that the first, upward extrusion occurred during Middle Triassic, the second, eastward extrusion occurred during Late Triassic to Early Jurassic. These two extrusions are correlative with two stages of rapid exhumation of the Dabie HP–UHP rocks, respectively. These two-stage late-collisional (Middle Triassic to Early Jurassic) extrusion events bridge the gap between syn-collisional (Early to Middle Triassic) vertical extrusion and post-collisional (Cretaceous) eastward-directed lateral escape and provide vital clues to understanding the more detailed processes of exhumation of HP–UHP rocks.  相似文献   

9.
《Journal of Structural Geology》2001,23(6-7):1043-1065
Transpressive deformation was distributed heterogeneously within the Central Maine belt shear zone system, which formed in response to Early Devonian oblique convergence during the Acadian orogeny in the northern Appalachians. ‘Straight’ belts are characterized by tight folds, S>L fabrics and sub-parallel form lines, and asymmetric structures that together indicate dextral–SE-side-up kinematics. In contrast, intervening zones between ‘straight’ belts are characterized by open folds and L≫S fabrics. Within both types of zone, metasedimentary rocks have fabrics defined by the same minerals at the same metamorphic grade, including a penetrative, moderately to steeply NE-plunging mineral lineation. Thus, we interpret accumulation of plastic deformation and regional metamorphic (re-) crystallization to have been synchronous across the Central Maine belt shear zone system. Discordance between inclusion trails in regionally developed porphyroblasts of garnet and staurolite and matrix fabrics in ‘straight’ belt rocks records shortening by tightening of folds and greater reorientation of matrix fabrics with respect to porphyroblasts. Kinematic partitioning of flow was responsible for the contrasting states of finite deformation recorded in the Central Maine belt shear zone system. Perturbations in the flow were caused by serially developed thrust-ramp anticlines in the stratigraphic succession immediately above the Avalon-like basement, at which décollement of the shear zone system was initially rooted. General shear deformation at the ramps involved strain softening with an enhanced component of noncoaxial flow. In contrast, deformation during extrusion in the intervening zones involved strain hardening with a greater component of coaxial flow. Part of the thickening stratigraphic succession exceeded Tsolidus, reflected by the occurrence of migmatites and granites. The latter were partly sourced from the underlying Avalon-like basement that was involved in the deformation and melting.  相似文献   

10.
Late-Hercynian, high temperature (HT) shear deformation affected the zone straddling the contact between the Sila Massif batholith (above) and the host migmatitic paragneisses (below). A segment of the regional HT shear zone was investigated close to the town of Mesoraca, where a natural section allows one to analyse the solidus deformation of syn-tectonic granitoids. Shearing favoured the formation of polycrystalline quartz ribbons in deformed granodiorite and tonalite. Two main c-axis fabrics were found in the quartz-ribbons, different from each other by opening angles around Z between strong point maxima, in accordance with deformation under granulite to amphibolite facies conditions. These fabrics, along with microstructural observations, suggest that temperature of deformation played a key role and that ribboning was accompanied by the activation of (i) prism [c] slip and prism [c] + prism <a> slips, under granulite facies conditions, followed by (ii) basal <a> and prism <a> slips under amphibolite facies conditions.  相似文献   

11.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

12.
周建勋 《地质科学》1999,34(1):10-17
商丹糜棱岩带岩湾、沙沟和商南等3个区段石英C-轴组构和显微构造特征表明,该带自西向东石英C-轴组构形式由单一环带型转为Y-轴方向的点极密型,然后变为Ⅰ型交叉环带型,构造变形环境从低绿片岩相过渡到中-高绿片岩相,然后变为高绿片岩相-低角闪岩相。构造变形环境差异是造成石英组构形式变化的主要因素。随着温压条件的升高,石英滑移系从以底面〈a〉滑移系和柱面〈a〉滑移系的共同作用为主转向以单一柱面〈a〉滑移系为主,进而底面〈a〉滑移系和柱面〈a〉滑移系又重新变得活跃,且菱面滑移系的作用也变得十分重要。  相似文献   

13.
定结地区韧性剪切带变形特征与糜棱岩研究   总被引:3,自引:0,他引:3  
定结地区位于喜马拉雅造山带中段 ,发育有多方向、多尺度、多层次、多期次的韧性剪切带。在剪切带中 ,各种韧性变形组构极为丰富 ,表明剪切带岩石的变形主要为韧性变形机制所致。变形岩石类型为花岗质糜棱岩、长英质糜棱岩和硅质糜棱岩 ;由于岩石受糜棱岩化作用程度的不同 ,在韧性剪切带中发育糜棱岩化岩石、初糜棱岩、糜棱岩及超糜棱岩 ;剪切带岩石的变形温度为 2 0 8~ 5 5 9℃。  相似文献   

14.
Following the early Eocene collision of the Indian and Asian plates, intracontinental subduction occurred along the Main Central Thrust (MCT) zone in the High Himalaya. In the Kishtwar–Zanskar Himalaya, the MCT is a 2 km thick shear zone of high strain, distributed ductile deformation which emplaces the amphibolite facies High Himalayan Crystalline (HHC) unit south‐westwards over the lower greenschist facies Lesser Himalaya. An inverted metamorphic field gradient, mapped from the first appearance of garnet, staurolite and kyanite index minerals, is coincident with the high strain zone. Petrography and garnet zoning profiles indicate that rocks in the lower MCT zone preserve a prograde assemblage, whereas rocks in the HHC unit show retrograde equilibration. Thermobarometric results derived using THERMOCALC indicate a PT increase of c. 180 °C and c. 400 MPa across the base of the MCT zone, which is a consequence of the syn‐ to postmetamorphic juxtaposition of M1 kyanite grade rocks of the HHC unit on a cooling path over biotite grade footwall rocks, which subsequently attain their peak (M2) during thrusting. Inclusion thermobarometry from the lower MCT zone reveals that M2 was accompanied by loading, and peak conditions of 537±38 °C and 860±120 MPa were attained. M1 kyanite assemblages in the HHC unit, which have not been overprinted by M2 fibrolitic sillimanite, were not significantly affected by M2, and conditions of equilibration are estimated as 742±53 °C and 960±180 MPa. There is no evidence for dissipative or downward conductive heating in the MCT zone. Instead, the primary control on the distribution of peak assemblages, represented by the index minerals, is postmetamorphic ductile thrusting in a downward propagating shear zone. Polymetamorphism and diachroneity of equilibration are also important controls on the thermal profile through the MCT zone and HHC unit.  相似文献   

15.
The deformation history of a monophase calcite marble shear zone complex on Thassos Island, Northern Greece, is reconstructed by detailed geometric studies of the textural and microstructural patterns relative to a fixed reference system (shear zone boundary, SZB). Strain localization within the massive marble complex is linked to decreasing PT conditions during the exhumation process of the metamorphic core complex. Solvus thermometry indicates that temperatures of 300–350°C prevailed during part of the shear zone deformation history. The coarse-grained marble protolith outside the shear zone is characterized by symmetrically oriented twin sets due to early coaxial deformation. A component of heterogeneous non-coaxial deformation is first recorded within the adjacent protomylonite. Enhanced strain weakening by dynamic recrystallization promoted strong localization of plastic deformation in the ultramylonite of the calcite shear zone, where high strain was accommodated by non-coaxial flow. This study demonstrates that both a pure shear and a simple shear strain path can result in similar crystallographic preferred orientations (single c-axis maximum perpendicular to the SZB) by different dominant deformation mechanisms. Separated a-axis pole figures (+a- and −a-axis) show different density distributions with orthorhombic texture symmetry in the protolith marble and monoclinic symmetry in the ultramylonite marble consistently with the observed grain fabric symmetry.  相似文献   

16.
Asymmetric c-axis fabrics of quartz are commonly used to determine sense of vorticity in ductile shear zones. This method seems to work if the fabric pattern resembles a model fabric proposed by Lister and Hobbs (1980). Usually, however, c-axis fabrics are rather vague. The reliability of such vague fabrics was tested in a major shear zone with known sense of vorticity. Only 62% of the c-axis fabrics predict the correct sense. Great care should therefore be taken in applying this method to determine sense of vorticity.  相似文献   

17.
In the Sambagawa schist, southwest Japan, while ductile deformation pervasively occurred at D1 phase during exhumation, low-angle normal faulting was locally intensive at D2 phase under the conditions of frictional–viscous transition of quartz (c. 300 °C) during further exhumation into the upper crustal level. Accordingly, the formation of D2 shear bands was overprinted on type I crossed girdle quartz c-axis fabrics and microstructures formed by intracrystalline plasticity at D1 phase in some quartz schists. The quartz c-axis fabrics became weak and finally random with increasing shear, accompanied by the decreasing degree of undulation of recrystallized quartz grain boundaries, which resulted from the increasing portion of straight grain boundaries coinciding with the interfaces between newly precipitated quartz and mica. We interpreted these facts as caused by increasing activity of pressure solution: the quartz grains were dissolved mostly at platy quartz–mica interface, and precipitated with random orientation and pinned by mica, thus having led to the obliteration of existing quartz c-axis fabrics. In the sheared quartz schist, the strength became reduced by the enhanced pressure solution creep not only due to the reduction of diffusion path length caused by increasing number of shear bands, but also to enhanced dissolution at the interphase boundaries.  相似文献   

18.
Syntectonic plutons emplaced in shallow crust often contain intermediate-to low-temperature deformation microstructures but lack a high-temperature, subsolidus deformation fabric, although the relict magmatic fabric is preserved. The Proterozoic Vellaturu granite emplaced at the eastern margin of the northern Nallamalai fold belt, south India during the late phase of regional deformation has a common occurrence of intermediate-to low-temperature deformation fabric, superimposed over magmatic fabric with an internally complex pattern. But high-T subsolidus deformation microstructure and fabric are absent in this pluton. The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin of the granite body. Resulting granite mylonites show Y-maximum c-axis fabric in completely recrystallized quartz ribbonds, dynamic recrystallization of perthites, and myrmekite indicative of fabric development under intermediate temperature (∼ 500–400°C). The weakly-deformed interior shows myrmekite, feldspar microfracturing and limited bulging recrystallization of quartz. The abundance of prism subgrain boundaries is indicative of continuing deformation through low-temperature (∼ 300°C). The relative rates of cooling influenced by advective heat transfer and deformation of the pluton seem to control the overall subsolidus fabric development. The rapid advective heat transfer from the interior in the early stages of subsolidus cooling was followed by slow cooling through intermediate temperature window as a well-developed phyllosilicate rich mylonitic skin around the granite body slowed down conductive heat loss. Low-T crystal plastic deformation of quartz was effected at a late stage of cooling and deformation of the shallow crustal granite body emplaced within the greenschist facies Nallamlai rocks.  相似文献   

19.
边千韬  林传勇 《地质科学》1996,31(2):170-175
在可可西里北缘发现的糜棱岩化带,经显微构造研究确定为韧性剪切带。此带发育流劈理及拉伸线理。糜棱岩化花岗岩和糜棱岩化石英脉中的石英发育亚晶粒构造、位错构造和动态重结晶,长石主要发育机械双晶。石英c轴组构属韧性剪切带中的典型形式,石英变形以位错蠕变机制和位错滑移机制共存为特征,石英的动态重结晶作用是由亚晶粒旋转机制形成。长石的变形主要是通过机械双晶实现的。此韧性剪切带形成时的温度约400℃,差异应力约30MPa,应变速率约1.9×10-13s-1.  相似文献   

20.
This paper analyses a major shear zone from the Iberian Hercynian belt which forms the basal thrust of the Mondoñedo Nappe. The shear zone developed by ductile deformation under amphibolite facies metamorphic conditions and later by brittle-ductile deformation in greenschists facies. Folds in the shear zone are asymmetric, very tight, 1C or similar class and frequently developing sheath geometries. The sheath folds originated by non-coaxial flow superimposed on earlier irregularities. The fabric of quartzitic rocks in the shear zone changes from bottom to top from ultramylonites through blastomylonitic rocks to non-mylonitic tectonites. c-axis fabrics vary across the shear zone, but show a dominant monoclinic symmetry. The blastomylonitic rocks include the fabrics representing the highest temperatures. The main foliation of the schists results from flattening of an earlier foliation, recording occasional microfolds. The use of different kinematic criteria has allowed an analysis of their validity as well as an assessment of movement direction towards the foreland of the orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号