首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
ZHANG Li-wei  LI Xin 《海洋工程》2017,31(5):559-566
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

2.
For the offshore wind turbines installed in earthquake areas, their operation is affected by seismic loads in addition to wind and wave loads. Therefore, it is necessary to study the dynamic responses and vibration control of the wind turbines. In previous studies, the structural responses of offshore wind turbines are usually investigated in the parked case, while the blade rotation effect is usually not considered. The evaluation on the structural responses may be inaccurate under this conditi...  相似文献   

3.
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization.The strong-interaction method is used in analyzing the coupled model,and the dynamic characteristics of the TLP for offshore wind turbine support are recognized.As shown by the calculated results:for the lower modes,the shapes are water’s vibration,and the vibration of water induces the structure’s swing;the mode shapes of the structure are complex,and can largely change among different members;the mode shapes of the platform are related to the tower’s.The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform;the TLP has good adaptability for the water depths and the environment loads.The change of the size and parameters of TLP can improve the dynamic characteristics,which can reduce the vibration of the TLP caused by the loads.Through the vibration analysis,the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads,and thus the resonance vibration can be avoided,therefore the offshore wind turbine can work normally in the complex conditions.  相似文献   

4.
The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions.  相似文献   

5.
A numerical model is developed by use of the boundary integral equation method to investigate the responses of a two-dimensional floating structure.The structure under consideration consisting of two pontoons,is connected by a rigid framework,and linked to the sea floor by a mooring system.The theoretical conception is based on potential theory with linear external forces,and applied to an arbitrarily shaped body and water depth.The discussion includes the influence of draft and space between pontoons on the responses of the floating structure.Finally,the validity of the method is adequately verified by experimental results.  相似文献   

6.
胡志强  刘毅  王晋 《海洋工程》2016,(2):217-230
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.  相似文献   

7.
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.  相似文献   

8.
SHI  Xiang 《中国海洋工程》2003,17(4):481-494
A three-dimensional fixed offshore platform in deep water modeled by the finite element method is studied in this paper. Analysis of the dynamic response of the MDOF structure is realized taking the non-linearity of the wave drag force and the wave-structure interaction into account. The structural response statistics, which have Gaussian distributions, are used to evaluate the vibration effect of the structure without TMD and with TMD. And an optimal method to design TMD controlling the first mode of the multi-mode structure is proposed. Moreover, the probabilities of occurrence of sea states at the platform site are considered for prediction of the long-term effect of a TMD. Simulation results demonstrate that the long-term effect of a well-designed TMD is good and the practical use is possible due to the good stability of its optimal parameters under different sea states.  相似文献   

9.
Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted.  相似文献   

10.
- Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the, non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dyanamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.  相似文献   

11.
Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.  相似文献   

12.
The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.  相似文献   

13.
The failure of one or even more components usually does not lead to the collapse of the whole structure. Most of the analysis of fatigue is centered on only a single component which the researchers are interested in or much attention should be paid to. However, the collapse of a structure is the result of failure of a series of components in a specific order or path. This paper proposes an integrated approach to fatigue life prediction of whole structural system for offshore platforms, mainly describing the basic principles and prediction method. A method is presented for determining the failure path of the whole structure system and calculating the fatigue life in the determined failure path. The corresponding final collapse criteria for the whole structure system are discussed. A simple method of equivalent fatigue stress range calculation and a mathematical model of structural component fatigue life estimation in consideration of sea wave and sea ice loads are provided. As an application of the propo  相似文献   

14.
All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the ‘plastic hinge’. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by comparison with the FEM under different conditions.  相似文献   

15.
Spectrum and self-excite characters are the two significant characters of the dynamics of sea ice. The spectrum character of sea ice is mainly shown by the spectrum of ice force. The spectrum character of the sea ice is its intrinsic attributes. When the spectrum of ice force from the dynamic response of ice and structure interaction are evaluated, the effect of dynamic character of the structure must be eliminated. In this paper, the ice force spectrum at Bohai Bay and Liaodong Bay is evaluated from the displacement and strain responses of a single degree and a multi-degree freedom structure. The evaluated ice force spectrum can be used to define the spectrum character of ice in the analysis of ice induced vibration.  相似文献   

16.
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.  相似文献   

17.
This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper (TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysis focuses on the energy concept of TMD/structure systems. In this study, a time domain is taken. The platform is modeled as a simplified single-degree-of-freedom (SDOF) system by extraction of the first vibration mode of the structure and the excited force is assumed to be impact loading. The energy dissipation and energy transmission of the structure-TMD system are studied. Finally, an optimized TMD design for the modeled platform is demonstrated based on a new type of cost function - maxi-mum dissipated energy by TMD. Results indicate that TMD control is effective in reducing the Standard deviation of the deck motion but less effective in reducing the maximum response under impact loading.  相似文献   

18.
The dynamic response of offshore platforms is more serious in hostile sea environment than inshallow sea.In this paper,a hybrid solution combined with analytical and numerical method is proposedto compute the stochastic response of fixed offshore platforms to random waves,considering wave-struc-ture interaction and non-linear drag force.The simulation program includes two steps:the first step is theeigenanalysis aspects associated the structure and the second step is response estimation based on spectralequations.The eigenanalysis could be done through conventional finite element method conveniently andits natural frequency and mode shapes obtained.In the second part of the process,the solution of theoffshore structural response is obtained by iteration of a series of coupled spectral equations.Consideringthe third-order term in the drag force,the evaluation of the three-fold convolution should be demanded fornonlinear stochastic response analysis.To demonstrate this method,a numerical analysis is carrie  相似文献   

19.
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the met...  相似文献   

20.
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号