首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency (period < 90 days) variations in meteorological conditions on persistent pollution events (those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions. Some results from this study are based on a limited number of events and thus require validation using more data.  相似文献   

2.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

3.
乌海市PM_(10)污染浓度与气象条件分析   总被引:1,自引:1,他引:0  
乌海市PM10浓度与风速的关系明显。总体而言,PM10污染物浓度随风速的增大而增大;冬季当风速在3.1~4.0m.s-1时,PM10污染物浓度低。PM10浓度与地面风向的关系:春季偏西风时PM10污染浓度最高,偏北风时污染浓度最低;冬季东南风时污染浓度最高,西北风时污染浓度最低。PM10浓度与空气湿度的关系:冬季PM10污染浓度值随湿度的增加而增加,正相关比较明显。春季当空气湿度越小,出现重度污染的频率越高。  相似文献   

4.
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern–central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.  相似文献   

5.
连续雾霾天气污染物浓度变化及天气形势特征分析   总被引:8,自引:2,他引:6  
利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。  相似文献   

6.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

7.
为深入了解晋城市颗粒物浓度时空分布特征,对晋城市2017年12月至2018年5月国控点、小型站和微型站PM2.5及PM10小时浓度数据进行收集整理,并进行空间插值分析和时间变化趋势分析及与气象监测数据的相关分析。结果表明:颗粒物浓度在冬、春季节具有明显差异,冬季PM10与PM2.5高值区主要位于东北部及东南小部分区域,春季PM10高值区位于城区南部区域,PM2.5高值区主要集中于城区。晋城市城区和郊区PM10与PM2.5月均浓度整体呈单峰型变化,PM10在4月份最高(157.54±5.67μg·m^-3),PM2.5在1月份最高(94.08±2.25μg·m^-3)。冬季PM2.5/PM10平均为0.57,春季平均为0.45。颗粒物小时浓度的变化呈现单峰单谷的型式,冬季PM10与PM2.5小时平均浓度最高值均出现在10时,春季均出现在09时。监测期间晋城市PM10与PM2.5的小时浓度值与相对湿度有较高的正相关性(p<0.01),与风速、风向有较高的负相关性(p<0.01),与温度和气压的相关性较低。冬季,东北至正南风向时,PM10与PM2.5的浓度普遍高于西北风向时的浓度,对晋城冬、春季国控点颗粒物浓度贡献率最高的风向风速为东南偏南风向,风速在1 m/s以内。  相似文献   

8.
利用2015—2016年贵港市空气自动监测站空气质量指数、首要污染物等数据及贵港国家气象观测站的常规气象观测资料(风速、湿度、气温等),分析了贵港市2015—2016年空气质量概况及相关气象因子,进而利用合成分析方法对贵港市在不同季节出现不同级别空气污染的天气形势变化进行了分析。分析结果表明:贵港市的首要污染物为PM_(2.5)和PM_(10),其中12月、1—2月为贵港市空气污染最严重的月份。各气象要素与空气质量指数相关性较强,风速、气温、降水等气象条件对贵港市的空气质量影响显著。在春、秋、冬季,冷空气南下影响贵港市,500 hPa为持续的下沉运动且850 hPa相对湿度较低及850hPa由北风转为南风且风速较小时,贵港市极易出现轻度污染以上的天气;当云南一带有南支槽活动时,贵港市易出现重度污染天气。夏季影响贵港市空气质量的主要因素则是热带气旋移动至江苏、浙江一带时,热带气旋的外围下沉气流导致贵港市出现持续下沉运动。此时,受副热带高压系统或者其他天气系统影响,850 hPa风向出现明显转折时,应考虑贵港市出现轻度污染的天气现象。  相似文献   

9.
上海市大气降尘污染的地面气象背景特征   总被引:10,自引:0,他引:10  
对上海市11 a(1993-2003年)的月降尘量和同期气象要素资料分析表明,降尘量的年际变化呈下降趋势、月际变化呈双峰型分布,气象因子是这种分布的主要影响因素;重点运用聚类分析方法将降尘地面气象背景分为A、B、C、D、E 5个类型,不同天气类型对降尘量的影响不同,其中A型最有利于降尘,其气象特征是偏南风频率、3 m/s以上风速频率、蒸发量和气温位居其他各类之首,降水量、雨日数、湿度中等,气压低.冬季,降水与降尘量呈现为一定的正相关关系.  相似文献   

10.
污染天气分型研究对空气质量预报预警等具有重要的意义,基于2015年1月~2018年12月欧洲数值预报中心(ECMWF)再分析资料和国家气象站常规资料,采用聚类分析法按高空及地面天气形势划分了贵港市的污染天气类型,并探讨各天气类型下的污染天气特征和空气质量状况。结果表明,发生大气污染时,按高空(500 hPa)环流形势可分为两槽一脊型、一槽一脊型、副热带高压型,其中两槽一脊发生在秋冬季的频率最高。按地面环流形势可分为冷高压脊底部型、冷高压控制型、冷高压后部型、西南暖低压型、热带气旋型、均压场型共6种类型,并构建天气学模型。其中冷高压脊底部控制下的污染天气天数最多(61天);但冷高压控制型空气质量最差(AQI为163),是造成颗粒物(PM2.5/PM10)超标的类型;西南暖低压型次之(AQI为135);热带气旋型和均压场型常常表现为高温多日照,容易造成O3污染。大气污染发生时环流形势和气象要素表现为大气稳定度升高,水平和垂直扩散条件变差,地面平均风速不超过1.5m/s,相对湿度大于50%,日雨量皆为不超过5mm的零星小雨。  相似文献   

11.
乌海市灰霾天气的气候特征分析   总被引:2,自引:0,他引:2  
利用乌海市1971—2009年每天4个时次(或3个时次)的常规地面观测资料和2004—2009年的空气质量状况(PM10、SO2、NO2浓度值),统计分析了乌海市灰霾的分布特征和规律以及出现灰霾时的相对湿度、平均水平能见度、2分钟平均风速、风向特征和空气质量状况。得到:(1)乌海市1971—2009年共出现165次灰霾天气,2004年以后出现了161次,最多出现在2007年和2009年;春季出现次数最多,冬季最少;4月出现最多,1月和2月出现最少;82.4%的灰霾天气出现在08时。(2)当出现灰霾时,相对湿度在60%以下占71%,相对湿度在70%以上时绝大部分是与雾同时出现;灰霾天气出现最多风向是偏南风,最多风速是≤3.0 m.s-1。(3)2004—2006年出现灰霾时92%的空气质量出现了三级轻微或轻度污染,2007年以后出现灰霾时,在冬半年空气质量绝大部分为三级轻微或轻度污染,而在夏半年大部分空气质量为良。  相似文献   

12.
俞海洋  张杰  李婷  魏军  赵亮 《气象科学》2018,38(4):512-522
利用NASA Terra卫星搭载的MODIS传感器观测到的2000—2013年气溶胶光学厚度数据和河北省142个观测站同期的气象数据,对北京及周边区域大气气溶胶的时空变化特征进行了分析,并通过研究光学厚度与各气象要素的关系,对影响大气气溶胶时空变化的关键气象因素进行探讨。结果表明:北京以南区域的气溶胶光学厚度在夏季最大,其次为春季,秋冬季相对较低,河北省西北部低于东南部;坝上地区的光学厚度年际变化小于其他地区,平原区与沿海地区的年际变化基本一致,春夏高于秋冬。春季相对湿度是影响光学厚度值的重要因素,气溶胶光学厚度的高值出现在5—7月,并伴随较高的相对湿度、较低的能见度、南风、较低的地面风速和稳定的大气层结。北京以南的河北省各台站污染程度与北京类似,南部站点的光学厚度高于东北部,这与人为气溶胶的排放主要集中于北京南部的工业城市,以及南风控制的污染物扩散方向有关。  相似文献   

13.
城市空气质量与气象条件的关系及空气质量预报系统   总被引:8,自引:0,他引:8  
利用2002年6月1日至2004年5月31日沧州市环境监测站的逐日空气质量报告数据,对沧州市空气质量及其污染物进行了统计分析,发现沧州市空气质量优良的天数居多,两年中有236天污染天气。影响沧州市空气质量的首要污染物为PM10,其次为SO2,空气质量受季节影响较为严重,冬季取暖期污染最为严重,属于“煤烟型”污染,并与天气现象、气压场、风场、总云量等气象因子密切相关。对比沧州市每日运行的空气质量预报系统,CAPPS 1.0模式比统计预报模式预报更为准确。  相似文献   

14.
利用2004—2007年三明市主要大气污染物PM10的监测值及气象因子(气压、风速、温度、湿度、降水、蒸发量)观测资料,以及同期08:00 850 hPa天气图资料,定量分析了PM10的突变特征以及突变与气象因子的相关关系。结果表明:PM10突变事件有明显的季节性特征,冬、春季节发生突变的概率较大;当地面气象要素场出现气压下降、风速减小、相对湿度下降、降水量减小而温度上升、蒸发量加大的配置时,PM10易发生正突变,当出现气压上升、风速加大、相对湿度上升、降水量增加而温度下降、蒸发量减小的配置时,PM10易发生负突变;当受大陆高压后部、暖区辐合系统影响时,PM10发生正突变的概率较高,受大陆高压前部、切变线系统影响时,PM10发生负突变的概率较高。  相似文献   

15.
基于2017-2019年河源市空气质量数据,分析了河源市首要污染物的年际变化特征,同时利用2019年东埔国控站点的首要污染物与气象要素进行了相关性分析,并以典型污染日为案例,分析了气象条件对污染过程的影响。结果表明:2017-2019年细颗粒物(PM2.5)污染日比重大幅度降低,以臭氧(O3)为首要污染物的污染日逐年增加,污染形式逐渐从颗粒物污染向臭氧污染发生转变。O3浓度与温度和湿度分别呈正负相关关系,高浓度O3主要出现在(20-30℃,25%-55%)阈值之间,在吹西北偏北风时O3浓度也较高。PM2.5和PM10与湿度也呈负相关关系,温度与湿度组合在(8-13℃,40%-55%)范围内时两者容易同时出现高值;在夏季PM2.5和PM10还与温度具有较强的正相关关系,这意味着高温情况下河源有出现颗粒物与O3复合污染的可能。河源市典型污染日具有风速较小局部扩散不利的特征,低温低湿条件下容易出现PM2.5污染,且主要受到区域的传输影响;而高温低湿条件下容易发生O3污染,且较高的前体物浓度容易加剧O3的本地污染。  相似文献   

16.
利用2006年8月-2007年10月辽宁中部沈阳、鞍山、抚顺和本溪4城市可吸入颗粒物PM10、PM2.5、PM1及同步气象因子的监测资料,分析了可吸入颗粒物分布特征、污染水平及其与气象因子的关系。结果表明:受区域天气系统的影响,4城市PM10和PM2.5的日平均浓度变化趋势基本一致,具有区域分布特征;PM10超标率冬季为最高;PM2.5日平均浓度占PM10比例夏季和冬季最大;PM10、PM2.5和PM1之间有很好的相关性;PM10与风速、温度呈负相关,PM2.5和PM1与能见度、风速、温度呈负相关,与相对湿度成正相关。  相似文献   

17.
利用2001年1月1日-2012年12月31日北京市空气污染指数资料和地面气象观测数据,对北京市API的节气变化特征及其与气象因子在节气尺度上的相关关系进行统计分析。结果表明:2001-2012年北京市春季和冬季分别以清明和小雪节气API最高,空气质量最差;立秋节气API最低,空气质量最好。春分至霜降节气空气首要污染物是PM10,SO2作为首要污染物出现在立冬~大寒和立春~惊蛰节气,小寒达到最大。温度、风速和相对湿度是影响北京空气质量主要气象因子,立春~谷雨主要受气压影响,立冬~大寒受相对湿度和日照时数影响较大,立夏~霜降与平均气温和最低气温显著相关,风速主要影响春秋节气。  相似文献   

18.
利用44个自动站的小时观测资料,详细分析了北京地区近15年来气温、风速、相对湿度和有效温度的分布和变化情况,结果表明:1)北京地区年平均气温、风速和有效温度都显著地受到了地形分布的影响,相对湿度没有表现出明显的地形差异。研究时段内,北京整体呈变干变暖。区域上,气温与有效温度增幅最大的区域集中在平原中心城区,西北和东北部的远郊山区增幅最小,相对湿度降低的程度在区域上较为平均;2)按有效温度的热感受等级划分,北京地区冬季平均热感受属于“寒冷”,年、春季和秋季平均热感受属于“冷”,夏季平均热感受属于“温暖”。春季、夏季和冬季变干变暖明显,秋季则存在明显的区域差异;3)北京地区年平均气候适宜日数在全年中占比41.3%。气候适宜日数变化在区域间差异较大,超过半数站点表现出“气候适宜日数”的减少。由于整体上的变干变暖趋势,导致春季“气候适宜日数”整体在增加,夏季“气候适宜日数”整体在减少。秋季的“气候适宜日数”没有表现出统一的趋势。冬季的热感受主要集中于寒冷日和冷日,“气候适宜日数”很少。  相似文献   

19.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

20.
基于2015、2016年河南省环境监测中心站获取的郑州市9个监测点颗粒物浓度和逐日气象数据,对气象因素和颗粒物浓度相关性进行了研究。结果表明:郑州市大气颗粒物浓度受季节影响较强,总体呈现冬季高、夏季低的趋势。降水量与大气颗粒物浓度呈现明显的负相关。相对湿度的增高不利于PM_(2. 5)浓度的降低,而PM_(10)的浓度则随着相对湿度的增高有所降低。春夏秋三季的主要风向为东北偏东,当春季风为东南风和西风时,颗粒物浓度最低;当夏季风为东北偏东风时,颗粒物浓度最低;秋季吹东北风时,颗粒物浓度最低。冬季吹西北风(郑州冬季盛行风向)时,大气颗粒物质量浓度最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号