首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.  相似文献   

2.
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization.The strong-interaction method is used in analyzing the coupled model,and the dynamic characteristics of the TLP for offshore wind turbine support are recognized.As shown by the calculated results:for the lower modes,the shapes are water’s vibration,and the vibration of water induces the structure’s swing;the mode shapes of the structure are complex,and can largely change among different members;the mode shapes of the platform are related to the tower’s.The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform;the TLP has good adaptability for the water depths and the environment loads.The change of the size and parameters of TLP can improve the dynamic characteristics,which can reduce the vibration of the TLP caused by the loads.Through the vibration analysis,the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads,and thus the resonance vibration can be avoided,therefore the offshore wind turbine can work normally in the complex conditions.  相似文献   

3.
ZHANG Li-wei  LI Xin 《海洋工程》2017,31(5):559-566
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

4.
Fixed offshore wind turbines usually have large underwater supporting structures.The fluid influences the dynamic characteristics of the structure system.The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction(FSI) is established,and the structural modes in air and in water are obtained by use of ANSYS.By comparing low-order natural frequencies and mode shapes,the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed.On basis of the above work,seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method.The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water.The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

5.
For the offshore wind turbines installed in earthquake areas, their operation is affected by seismic loads in addition to wind and wave loads. Therefore, it is necessary to study the dynamic responses and vibration control of the wind turbines. In previous studies, the structural responses of offshore wind turbines are usually investigated in the parked case, while the blade rotation effect is usually not considered. The evaluation on the structural responses may be inaccurate under this conditi...  相似文献   

6.
In this paper, a single-column structure used as well-head platform is studied. The loads of wave and current exerted on the single-column will be greatly reduced, therefore the cost of the structure will be decreased. The advantages of the single-column structure compared with ordinary jacket structure are explained. A dynamic analysis of this type of structure is made and some problems related to dynamic analysis are solved. In order to check the reliability of computation theory and programme, model tests have been carried out. However, as space is limited, the conclusion of tests will be introduced in another paper. Therefore, this type of structure is applicable for proctical engineering.  相似文献   

7.
Multiple-Step Predictive Control for Offshore Structures   总被引:13,自引:0,他引:13  
—Ocean wave propagation is slow,visible and measurable,so a wave theory can be used to approxi-mately predict the imminnent wave force on an offshore structure based on measured,real-time wave elevation nearthe structure.This predictability suggests the development of a more efficient algorithm,than those that have beendeveloped for structures under wind and seismic loads,for the active vibration control of offshore structures.Thepresent study delveops a mutiple-step predictive optimal control(MPOC)algorithm that accounts for multiple-step external loading in the determibation of optimal control forces.The control efficiency of the newly developedMPOC algorithm has been investigated under both regular(single-frequency)and irregular(multiple-frequency)wave loads,and compared with that of two other well-known optimal control algorithms:classical linear optimalcontrol(CLOC)and instantaneou optimal control(IOC).  相似文献   

8.
ANALYSIS OF DYNAMIC STABILITY OF SUBMERGED STRUCTURE   总被引:2,自引:0,他引:2  
The submerged structure is basically a large three-dimensional structure of few statically redundant members. The structure is subjected to vertical dead and live loads in addition to the wave forces. An analysis of dynamic stability of the submerged structure without damping has been made by J. Thomas and Abbas (1980). In this paper the analyses of dynamic stability of the sumberged structure with damping are conducted. The case structure with damping is more complicated 'than the case without it. According to the principle of perturbation, a new model for dynamic stability calculation in consideration of damping effect is developed. In this paper, the formulas are deduced, the computational program is compiled, the practical examples are analysed, and this problem is solved very satisfactorily. The computational results show that the shape and value of the regions of dynamic instability can be changed significantly by damping. So only by considering damping can the property of dynamic stability of the submerged structure be reflected correctly.  相似文献   

9.
The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.  相似文献   

10.
LU  Jianhui 《中国海洋工程》2002,16(3):321-328
The purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vi-bration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to determine the optimal damper parameters under ocean wave loading. The force on the structure is determined by use of the linearized Morison equation. Investigation on the deck motion with and vvithout MTMD on the structure is made under design condi-tions. The results show that MTMD with the optimized parameters suppress the response of each structural mode. The sensitivity of optimum values of MTMD to characteristic wave parameters is also analyzed. it is indicated that a single TMD on the deck of a platform can have the best performance, and the small the damping value of TMD, the betler the vibration control.  相似文献   

11.
胡志强  刘毅  王晋 《海洋工程》2016,(2):217-230
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.  相似文献   

12.
This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper (TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysis focuses on the energy concept of TMD/structure systems. In this study, a time domain is taken. The platform is modeled as a simplified single-degree-of-freedom (SDOF) system by extraction of the first vibration mode of the structure and the excited force is assumed to be impact loading. The energy dissipation and energy transmission of the structure-TMD system are studied. Finally, an optimized TMD design for the modeled platform is demonstrated based on a new type of cost function - maxi-mum dissipated energy by TMD. Results indicate that TMD control is effective in reducing the Standard deviation of the deck motion but less effective in reducing the maximum response under impact loading.  相似文献   

13.
Vibration Characteristics of An Offshore Platform and Its Vibration Control   总被引:1,自引:0,他引:1  
LI  Hua-jun 《中国海洋工程》2002,16(4):469-482
A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration un-der mildly hostile sea conditions, which has affected the normal operation of the platform. Since the structure was de-signed to sustain more severe wave climate, the cause of the excessive vibration has been suspected to originate from other sources. The main objectives of this study are to investigate the causes of the excessive vibration, and to explore possible remedies to solve the problem, In this paper, the vibration behavior of the offshore platform is analyzed by means of finite element (FE) modeling, field measurements and laboratory test. Results of analysis suggest that relative movement and impact between the piles and the jacket legs exist, i. e. the piles and the jacket are not perfectly connected. The discon-nection of the piles and jacket weakens the overall stiffness of the platform, and therefore produces unexpected excessive vibration. In this study, measures for reducing  相似文献   

14.
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design. Understanding the soil-structure interaction, particularly the initial soil-structure stiffness, has a significant impact on the study of natural frequency and dynamic response of the monopile. In this paper, a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum po...  相似文献   

15.
Owing to the ageing of the existing structures worldwide and the lack of codes for the continued safely management of structures during their lifetime, it is very necessary to develop a tool to evaluate their system reliability over a time interval. In this paper, a method is proposed to analyze system reliability of existing jacket platforms. The influences of dint, crack and corrosion are considered. The mechanics characteristics of the existing jacket platforms to extreme loads are analyzed by use of the nonlinear mechanical analysis. The nonlinear interaction of pile-soil-structure is taken into consideration in the analysis. By use of FEM method and Monte Carlo simulation, the system reliability of the existing jacket platforul can be obtained. The method has been illustrated through application to BZ28-1 three jacket platforms which have operated for sixteen years. Advantages of the proposed method for analyzing the system reliability of the existing jacket platform is also highlighted.  相似文献   

16.
- In this paper, a computation method has been developed so as to compare the finite element method (FEM) with the test results directly. The structure is divided into the "master" and "slave" degrees of freedom. The simplified model can be obtained with modal reduction. Then the design sensitivity analysis of the eigenvalues and eigenvectors has been carried out using the modal frequency and modal shape of the test. A two-story frame structure and a jacket model structure have been calculated. Meanwhile, the modified coefficient, the FEM computational and experimental values have been given. It has been shown that the FEM model modified using the test modal value is efficient.  相似文献   

17.
The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant changing,requires understanding the real behavior of these structures to prevent possible failure.In this work,empirical and numerical models of jacket structure are investigated.A test on experimental modal analysis is accomplished to acquire the response of structure and a mathematical model of the jacket structure is also performed.Then,based on the control theory using developed reduction system,the matrices of the platform model is calibrated and updated.The current methodology can be applied to prepare the finite element model to be more adaptable to the empirical model.Calibrated results with the proposed approach in this paper are very close to those of the actual model and also this technique leads to a reduction in the amount of calculations and expenses.The research clearly confirms that the dynamic behavior of fixed marine structures should be designed and assessed considering the calibrated analytical models for the safety of these structures.  相似文献   

18.
A comprehensive strength monitoring system used on a fixed jacket platform is presented inthis paper.The long-term monitoring of W-11-4A platform achieved.Structural responses(strain andacceleration)at selected locations,as well as associated environmental parameters,have been obtained.The emphasis of the paper is placed on the system design,and the instrumentation and operationmethodology employed in the monitoring of the structural responses.The performance of the system andthe characteristic results obtained during its 13-month operation are also summarized.  相似文献   

19.
- The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load.  相似文献   

20.
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves. Input wave groups are generated by the technique of frequency-focusing, and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure. The proposed model is validated by comparison with the published laboratory data. In respect of both the wave elevations and the underlying water particle kinematics, the numerical results are in excellent agreement with the experimental data. Furthermore, the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified. Then the generalized FNV theory and Rainey's model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra) are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio) of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号