首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Straits of the Cretan Arc are the gateways through which water exchanges between the Cretan Sea and the SE Ionian and NW Levantine Seas. Dissolved oxygen and nutrient fluxes have been quantified for the major straits — Antikithira, Kassos and Karpathos — by combining chemical bottle-sample data and current measurements obtained during the PELAGOS Project during 1994–1995. Two water masses, Cretan Deep Water (CDW) and Transitional Mediterranean Water (TMW) dominate the circulation through the straits and lead to a vertical redistribution of nutrients in the Eastern Mediterranean Sea.The transport of chemicals through the major straits of the Cretan Arc appears to be highly variable. In the Antikithira and Kassos Straits, a net export of oxygen and nutrients from the Cretan Sea towards the open waters of the Eastern Mediterranean was observed throughout the entire study period. In contrast, a net inflow of oxygen and nutrients of Levantine origin was taking place through the Karpathos Strait. It is concluded that the export of nutrients through the Antikithira and Kassos Straits are almost completely balanced by the net import through the Karpathos Strait.  相似文献   

2.
A simple hydraulic model is used to estimate the deep water fluxes of Cretan Deep Water (CDW), through the Cretan Arc Straits and into the Eastern Mediterranean Basins. The input to the model consists of the height of the deep water reservoir above sill depth and its density difference from the overlying water masses. Data from four hydrographic cruises, which took place in 1995, 1991 and 1987, are used to estimate the depth of the reservoir above the sill and the density difference. The results show a significant CDW outflow of 0.75×106 m3 s−1 in early 1995. The outflow of CDW through Kassos Strait, in the east, is 0.53×106 m3 s−1, while 0.22×106 m3 s−1 outflows through the Antikithira Strait in the west. The model results agree with fluxes estimated from current meter observations.The CDW outflow has been neither steady nor uniform during the period 1987–95. In the Kassos Strait, the outflow commenced in 1987 and increased rapidly until 1991; since then, it appears to have stabilised. In the Antikithira Strait, in contrast, the outflow has increased steadily since 1987. Such modifications in the CDW outflow are associated with changes in its hydrographic characteristics. The salinity of CDW increased constantly, by approximately 0.1, between 1987 and 1995 while its temperature warmed, between 1987 and 1991, and then cooled.  相似文献   

3.
Nutrient and oxygen data collected in the southern Aegean Sea (Cretan Sea) and the straits of the Cretan Arc, during the four seasonal PELAGOS cruises in 1994–1995, are investigated and compared with data collected from 1987 to 1992 within the same area. During the cruises of the PELAGOS Project, nutrient enrichment of the intermediate layers of the Cretan Sea was observed, as a result of intrusion of ‘nutrient-rich, oxygen-poor’ Transition Mediterranean Water (TMW) compensating the Cretan Deep Water (CDW) outflow. TMW occupied the intermediate layers of the entire Cretan Sea. The concentrations of nutrients within this layer were often two times higher than those observed in the same area during previous studies undertaken before 1992 (increase 2.5 μmol/l of nitrate, 0.05 μmol/l of phosphate and 2.5μmol/l of silicate). The decrease of oxygen in this layer is about 0.8ml/l (35 μmol/l). Outflow of CDW occurs principally through the Antikithira and Kassos Straits (the two deeper straits of the Cretan Arc); it results in an increase of oxygen content but a decrease in the nutrient content of water in the deep and bottom layers outside the Cretan Sea. The major mesoscale features in the area have a major influence of the distributions and exchanges of nutrients and oxygen through the straits of the Cretan Arc. The surface and the intermediate layers were richer in nutrients and poorer in oxygen in spring (March 1994), than in autumn (September 1994).  相似文献   

4.
The biogeochemistry of the following elements Al, Fe, Sibio, POC, PNtot, Cabio, Sorg, P and Mn has been studied within waters of the Cretan Sea in March and September 1994, as part of the PELAGOS project. Particulate aluminosilicate concentrations, exemplified by Al, are very low (<1 μgl−1) especially in the upper waters. Higher concentrations occur below 200 m, especially at depths of 200 m and 500–700 m in the central and eastern areas, and are thought to result from sediment injections from the shelf edge and slope. The results for Sibio, Cabio, P and Sorg show much higher concentrations within the photic waters. Temporal and spatial high concentrations in these waters closely relate to the existence of cyclonic eddies on the east and west sides of the sea, while low concentrations are associated with an intervening anticyclonic eddy. However in September, discharge of Black Sea Water in the west sufficiently suppresses the thermocline to prevent upwelled water from reaching the surface and hence these substances are prevented from forming.Particulate Fe (expressed as Feexcess) concentrations show much higher concentrations relative to Al in September, and are thought to result from additional atmospheric inputs. The low particulate Mn concentrations in the upper water compared with deeper waters are considered to be a product of photoinhibition of MnOx precipitation from Mn(II).An attempt has been made to assess input/output budgets of Al, Ca, Fe and Mn through the Antikithira and Kassos Straits. Much of the outflows leave through the Kassos Strait and, except for Ca, net outflows through the Antikithira Straits are negligible.  相似文献   

5.
Four seasonal oceanographic cruises were carried out in the Eastern Mediterranean Sea, within the framework of the CEC/MAST-MTP Project PELAGOS, during 1994–1995. The surveys covered the South Aegean Sea and the adjacent open sea regions (southeastern Ionian, northwestern Levantine). Analysis of CTD data revealed that a multiscaled circulation pattern prevails in the area. It differs from the circulations detected during the 1986–87, thus indicating interannual variability. Cyclonic and anticyclonic gyres and eddies are interconnected by currents and jets variable in space and time. Most of the features are persistent, others seem transitional or recurrent. The hydrological structure is also complex and apart from the upper layer does not present basinwide any significant seasonality. Dynamical and hydrological regimes are variable in the upper and intermediate layers at the Straits of the Cretan Arc, while the deep regime seems rather constant. Topographic control is evident on the flows through the straits. The new very dense deep water mass, namely the Cretan Deep Water (CDW) and a well-defined intermediate layer of minimum temperature and salinity, the so-called Transition Mediterranean Water (TMW), consists the new important structural elements of the South Aegean Sea. The CDW outflows towards the deep and bottom layers of the Eastern Mediterranean, thus considerably contributing to the formation of the new, denser Deep and Bottom Water of the Eastern Mediterranean, which sinks and displaces the Eastern Mediterranean Deep Water of Adriatic origin in the adjacent sea regions outside the Aegean Sea.  相似文献   

6.
Nutrient budgets for the South China Sea basin   总被引:3,自引:0,他引:3  
Varying atmospheric forcing and an elaborate geography make for a complex flow in the South China Sea (SCS). Throughout the year, the surface waters of the Kuroshio flow into the SCS, while the surface waters of the SCS flow out through the Bashi Channel. Cumulatively, there is a small (1 Sv) net outflow of surface water (0–350-m depth) from the SCS in the wet season, but a net inflow (3 Sv) in the dry season through the Bashi Channel. The differences are mainly made up by inflow and outflow of Sunda Shelf Water in the wet and dry seasons, respectively.Seawater, phosphorus, nitrogen and silicate budgets were calculated based on a box model. The results point out an intermediate water outflow (350–1350-m depth) into the West Philippine Sea (WPS) through the Bashi Channel in both the wet and dry seasons, though this, along with the nutrients it carries, is slightly larger in the dry season (2 Sv) than in the wet (1.8 Sv). More importantly, the export of nutrient-laden SCS intermediate water through the Bashi Channel subsequently upwells onto the East China Sea (ECS) shelf. The denitrification rate for shelves in the SCS is 0.11 mol N m−2 year−1, calculated by balancing the nitrogen budget. The oxygen consumption and the nutrient regeneration rates, based on the mass-balance and the one-dimensional advection–diffusion models, stand between those for the Bering Sea and the Sea of Japan.  相似文献   

7.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

8.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

9.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

10.
Bottom water formation changes the characteristics of water masses entering the southern part of the Weddell Sea through atmosphere-ice-ocean interaction in which both sea and shelf ice play an important role. Modified water, in particular Weddell Sea Bottom Water, recirculates in the west. By comparing the in- and outflowing water masses we have estimated transformation rates on the basis of a data set obtained during the Winter Weddell Gyre Study from September to October 1989. This consisted of a salinity-temperature-depth (CTD) section carried out by R/V “Polarstern” from the northern tip of the Antarctic Peninsula to Kapp Norvegia and data from three current meter moorings maintained from 1989 to 1990 in the eastern boundary current off Kapp Norvegia. Because of the lack of sufficient direct current measurements in the interior and the western boundary current, it was necessary to derive mass transports on the basis of available data combined with physical and geometrical arguments. At the mooring site barotropic currents were measured. They were extrapolated to the interior under the assumption that wind-driven, baroclinic and barotropic current fields are of similar shape. The location of the gyre centre was determined from drifting buoy tracks and geopoten-tial anomaly. A linear current profile from the eastern boundary current to the centre of the gyre was assumed, and the western outflow was determined according to mass conservation. Different assumptions on the transition from the boundary current to the interior and the location of the centre result in a wide range of transports with most likely values between 20 and 56 Sv. The total mass transport was split into individual water masses. Differences between inflow and outflow result in a transformation rate of 3–4 Sv from Winter and Warm Deep Water to Antarctic and Weddell Sea Bottom Water. The net heat and salt transport across the transect implies heat fluxes from the ocean to the atmosphere of 3–10 W m−2 and ice formation rates of 0.2–0.35 m year−1.  相似文献   

11.
This study describes the first year round observations of the outflow from Hudson Strait as obtained from a moored array deployed mid-strait from August 2004–2005, and from a high-resolution hydrographic section conducted in September 2005. The outflow has the structure of a buoyant boundary current spread across the sloping topography of its southern edge. The variability in the flow is dominated by the extreme semi-diurnal tides and by vigorous, mostly barotropic, fluctuations over several days. The fresh water export is seasonally concentrated between June and March with a peak in November–December, consistent with the seasonal riverine input and sea-ice melt. It is highly variable on weekly timescales because of synchronous salinity and velocity variations. The estimated volume and liquid fresh water transports during 2004–2005 are, respectively, of 1–1.2 Sv and 78–88 (28–29) mSv relative to a salinity of 34.8 (33). This implies that the Hudson Strait outflow accounts for approximately 15% of the volume and 50% of the fresh water transports of the Labrador Current. This larger than previously estimated contribution is partially due to the recycling, within the Hudson Bay System, of relatively fresh waters that flow into Hudson Strait, along its northern edge. It is speculated that the source of this inflow is the outflow from Davis Strait.  相似文献   

12.
13.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   

14.
In order to investigate total organic carbon (TOC) exchange through the Strait of Gibraltar, samples were taken along two sections from the western (Gulf of Cádiz) and eastern (Western Alboran Sea) entrances of the Strait and at the middle of the Strait in April 1998. TOC was measured by using a high-temperature catalytic oxidation method. The results referenced here are based on a three-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, Mediterranean outflow and an interface layer in between. All layers were characterised by a decrease of TOC concentrations from the Gulf of Cádiz to the Western Alboran Sea: from 60–79 to 59–66 μM C in the Atlantic inflow and from 40–60 to 38–52 μM C in the Mediterranean waters, respectively. TOC concentrations in the modified North Atlantic Central Water varied from 43 to 55 μM C. Intermediate TOC values were measured in the interface layer (43–60 μM C). TOC concentrations increased from the middle of the Strait towards continents indicating a contribution of organic carbon of photosynthetic origin along Spain and Morocco coasts or TOC accumulation due to upwelling in the northeastern part of the Strait. Our results indicate that the short-term variability caused by the tide greatly impacts the TOC distribution, particularly in the Gulf of Cádiz. The TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from 0.9×104 to 1.0×104 mol C s−1 (or 0.28×1012 to 0.35×1012 mol C year−1, respectively). This estimate suggests that the TOC inflow and outflow through the Strait of Gibraltar are two and three orders of magnitude higher than reported via the Turkish Straits and Mediterranean River inputs.  相似文献   

15.
An acoustic doppler current profiler (ADCP) is used to measure the currents and estimate the transports over the Camarinal Sill at the Strait of Gibraltar. The deepest measurements of the ADCP compare well with an underlying conventional current meter. The exchange interface between the Atlantic and the Mediterranean water is defined as the depth of the maximum vertical shear. The mean depth of the shear interface is 147 m. The time series of the depth of the interface and the currents are used to estimate the transports across the Strait. The resulting values are 0.78 Sv for the Atlantic inflow and −0.67 Sv for the Mediterranean outflow. The time series of the shear interface include fortnightly oscillations of 19 m. The time series of the transports are compared with the pressure and sea level difference records across the Strait. Linear multiple regression is used to estimate the (statistical) contribution of each parameter on the variation of transports. The cross strait sea level difference is well correlated with the Atlantic inflow and accounts for 57% of the variability of the transport records which improves to 78% when the fortnightly and monthly cycles are included in the linear regression. The Mediterranean outflow is best correlated with the along strait sea level difference which accounts for only 10% of the variability of the transport record. Again the addition of the Msf and the MM cycles improves the percentage of the variance accounted for to 37%. The local, along strait wind component is significantly correlated with, both the Atlantic inflow and the across strait sea level difference.  相似文献   

16.
The realization of North Atlantic Deep Water (NADW) replacement in the deep northern Indian Ocean is crucial to the “conveyor belt” scheme. This was investigated with the updated 1994 Levitus climatological atlas. The study was performed on four selected neutral surfaces, encompassing the Indian deep water from 2000 to 3500 m. The Indian deep water comprises three major water masses: NADW, Circumpolar Deep Water (CDW) and North Indian Deep Water (NIDW). Since NADW flowing into the southwest Indian Ocean is largely blocked by the ridges (the Madagascar Ridge in the east and Davie Ridge in the north in the Mozambique Channel) and NIDW is the only source in the northern Indian Ocean that cannot provide a large amount of volume transport, CDW has to be a major source for the Indian deep circulation and ventilation in the north. Thus the question of NADW replacement becomes that of how the advective flows of CDW from the south are changed to be upwelled flows in the north—a water-mass transformation scenario. This study considered various processes causing motion across neutral surfaces. It is found that dianeutral mixing is vital to achieve CDW transformation. Basin-wide uniform dianeutral upwelling is detected in the entire Indian deep water north of 32°S, somewhat concentrated in the eastern Indian Ocean on the lowest surface. However, the integrated dianeutral transport is quite low, about a net of 0.2 Sv (1 Sv=106 m3 s-1) across the lowermost neutral surface upward and 0.4 Sv across the uppermost surface upward north of 32°S with an error band of about 10–20% when an uncertainty of half-order change in diffusivities is assumed. Given about 10–15% of rough ridge area where dianeutral diffusivity could be about one order of magnitude higher (10-4 m2 s-1) due to internal-wave breaking, the additional amount of increased net dianeutral transport across the lowest neutral surface is still within that error band. The averaged net upward transport in the north is matched with a net downward transport of 0.3 Sv integrated in the Southern Ocean south of 45°S across the lowermost surface. With the previous works of You (1996. Deep Sea Research 43, 291–320) in the thermocline and You (Journal of Geophysical Research) in the intermediate water combined, a schematic dianeutral circulation of the Indian Ocean emerges. The integrated net dianeutral upwelling transport shows a steady increase from the deep water to the upper thermocline (from 0.2 to 4.6) north of 32°S. The dianeutral upwelling transport is accumulated upward as the northward advective transport provided from the Southern Ocean increases. As a result, the dianeutral upwelling transport north of 32°S can provide at least 4.6 Sv to south of 32°S from the upper main thermocline, most likely to the Agulhas Current system. This amount of dianeutral upwelling transport does not include the top 150–200 m, which may contribute much more volume transport to the south.  相似文献   

17.
The flow of Atlantic water between Iceland and the Faroe Islands is one of three current branches flowing from the Atlantic Ocean into the Nordic Seas across the Greenland–Scotland Ridge. By the heat that it carries along, it keeps the subarctic regions abnormally warm and by its import of salt, it helps maintain a high salinity and hence density in the surface waters as a precondition for thermohaline ventilation. From 1997 to 2001, a number of ADCPs have been moored on a section going north from the Faroes, crossing the inflow. Combining these measurements with decade-long CTD observations from research vessel cruises along this section, we compute the fluxes of water (volume), heat, and salt. For the period June 1997–June 2001, we found the average volume flux of Atlantic water to be 3.5±0.5 Sv (1 Sv=106 m3·s−1). When compared to recent estimates of the other branches, this implies that the Iceland–Faroe inflow is the strongest branch in terms of volume flux, transporting 47% of the total Atlantic inflow to the Arctic Mediterranean (Nordic Seas and Arctic Ocean with shelf areas). If all of the Atlantic inflow were assumed to be cooled to 0 °C, before returning to the Atlantic, the Iceland–Faroe inflow carries a heat flux of 124±15 TW (1 TW=1012 W), which is about the same as the heat carried by the inflow through the Faroe–Shetland Channel. The Iceland–Faroe Atlantic water volume flux was found to have a negligible seasonal variation and to be remarkably stable with no reversals, even on daily time scales. Out of a total of 1348 daily flux estimates, not one was directed westwards towards the Atlantic.  相似文献   

18.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

19.
Continental margins exert a strong influence on global biogeochemical cycles; however there have been relatively few attempts to quantify either the magnitude or nature of temporal variability in material fluxes. At present here are no reports on nutrient fluxes at the mouth of the Gulf of California (GC) so further information is needed to provide estimated values from direct measurements. From 1995–1999 during five cruises covering all seasons, seawater samples were collected and measured the nutrient content from the surface to the bottom (some deeper than 2500 m) from a repeated hydrographic sections at the mouth of the GC. This chemical and physical database is unique because it covers an area with important biogeochemical signs, which has been detected as one of the highest in primary productivity of the world oceans. These sections are perpendicular to the coastlines of the Mexican states of Baja California Sur (BCS) and Sinaloa. In this section, the most dynamic area was the surface waters in February 1999 with strong geostrophic currents and temperatures of 20 ± 1.5 °C; salinity 35.091 ± 0.156; pH 8.16 ± 0.13; phosphate 0.85 ± 0.42 μM, nitrate + nitrite 2.35 ± 2.94 μM, and ammonia 2.00 ± 1.25 μM (average ± standard deviation).Geostrophic velocities were computed from high-resolution CTD sections across the entrance to the GC. During winter and spring, the outflow occurred near BCS and the inflow occurred either through the center of the section and/or along the Sinaloa coast. Both inflow and outflow cores were 45 km wide and extended deeper than 700 m. Summer and fall showed a complex pattern, alternating cores of inflow and outflow but with inflow along Sinaloa on all cruises. The maximum flow into the Gulf occurs during May in the center of the section while outflow was concentrated along BCS. Mascarenhas et al. [Mascarenhas, A., Castro, R., Collins, C.A., Durazo, R., 2004. Seasonal variation of geostrophic velocity and heat flux at the entrance to the Gulf of California, Mexico. Journal Geophysical Research, 2124.] calculated the section mean geostrophic velocity that was composed of two alternating cores of inflow and outflow. The two cores that were adjacent to either coast were broader and contained the highest inflow (0.40 m s− 1) and outflow (− 0.25 m s− 1) velocities, supporting the general idea of inflow along the Sinaloa and an outflow along BCS.The highest nutrient fluxes occur during El Niño conditions in November 1997 with outflows as high as 54.5 Tg yr− 1 for Phosphate, 43.0 Tg yr− 1 for Nitrate and 31.7 Tg yr− 1 for Ammonia, this values were at least three times higher than in February 1999.  相似文献   

20.
The traditional image of ocean circulation between Australia and Antarctica is of a dominant belt of eastward flow, the Antarctic Circumpolar Current, with comparatively weak adjacent westward flows that provide anticyclonic circulation north and cyclonic circulation south of the Antarctic Circumpolar Current. This image mostly follows from geostrophic estimates from hydrography using a bottom level of no motion for the eastward flow regime which typically yield transports near 170 Sv. Net eastward transport of about 145 Sv for this region results from subtracting those westward flows. This estimate is compatible with the canonical 134 Sv through Drake Passage with augmentation from Indonesian Throughflow (around 10 Sv).A new image is developed from World Ocean Circulation Hydrographic Program sections I8S and I9S. These provide two quasi-meridional crossings of the South Australian Basin and the Australian–Antarctic Basin, with full hydrography and two independent direct-velocity measurements (shipboard and lowered acoustic Doppler current profilers). These velocity measurements indicate that the belt of eastward flow is much stronger, 271 ± 49 Sv, than previously estimated because of the presence of eastward barotropic flow. Substantial recirculations exist adjacent to the Antarctic Circumpolar Current: to the north a 38 ± 30 Sv anticyclonic gyre and to the south a 76 ± 26 Sv cyclonic gyre. The net flow between Australia and Antarctica is estimated as 157 ± 58 Sv, which falls within the expected net transport of 145 Sv.The 38 Sv anticyclonic gyre in the South Australian Basin involves the westward Flinders Current along southern Australia and a substantial 33 Sv Subantarctic Zone recirculation to its south. The cyclonic gyre in the Australian–Antarctic Basin has a substantial 76 Sv westward flow over the continental slope of Antarctica, and 48 ± 6 Sv northward-flowing western boundary current along the Kerguelen Plateau near 57°S. The cyclonic gyre only partially closes within the Australian–Antarctic Basin. It is estimated that 45 Sv bridges westward to the Weddell Gyre through the southern Princess Elizabeth Trough and returns through the northern Princess Elizabeth Trough and the Fawn Trough – where a substantial eastward 38 Sv current is hypothesized. There is evidence that the cyclonic gyre also projects eastward past the Balleny Islands to the Ross Gyre in the South Pacific.The western boundary current along Kerguelen Plateau collides with the Antarctic Circumpolar Current that enters the Australian–Antarctic Basin through the Kerguelen–St. Paul Island Passage, forming an energetic Crozet–Kerguelen Confluence. Strongest filaments in the meandering Crozet-Kerguelen Confluence reach 100 Sv. Dense water in the western boundary current intrudes beneath the densest water of the Antarctic Circumpolar Current; they intensely mix diapycnally to produce a high potential vorticity signal that extends eastward along the southern flank of the Southeast Indian Ridge. Dense water penetrates through the Ridge into the South Australian Basin. Two escape pathways are indicated, the Australian–Antarctic Discordance Zone near 125°E and the Geelvinck Fracture Zone near 85°E. Ultimately, the bottom water delivered to the South Australian Basin passes north to the Perth Basin west of Australia and east to the Tasman Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号