首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

2.
The present study aims to provide carbon-isotope curves for the Cenomanian to Turonian rudist-dominated successions in north Sinai. The high-resolution carbon-isotope curves obtained from north Sinai sections provide new insight for calibrating the age of rudists as well as for evaluating the effects of the oceanic anoxic event 2 (OAE2) on rudist communities. The primary goals are (1) to provide a high-resolution sequence stratigraphic framework for the Cenomanian-Turonian succession, (2) to use rudist and ammonite biostratigraphic data to distinguish the stratigraphic levels of the rudist species, and (3) to integrate the chemostratigraphic (δ13C) profile and the rudist levels to improve the biostratigraphy based on the rudist distributions and the carbon-isotope data. The recognition of three ammonite zones through the Cenomanian-Turonian succession was utilized to identify four temporally significant rudist levels indicative of the Lower Cenomanian, Middle Cenomanian, Upper Cenomanian, and Middle Turonian, respectively. Most of the rudists occur in the highstand deposits of medium-scale sequences. Carbon- and oxygen-isotopic analyses were carried out on both rudists and surrounding carbonate units. Based on the variations in the carbon-isotope signals, 12 chronostratigraphic segments were identified in the studied sections. The Cenomanian carbon-isotope segments (C23–C30) were obtained from the Halal Formation at Gabal Yelleg and Gabal Maaza sections, while the Turonian segments (C30–C34) were measured from the Wata Formation at Gabal Yelleg section. The carbon-isotope record from the studied sections is consistent with the trends documented in previous studies of the Tethyan realm. The Cenomanian-Turonian boundary is placed at the onset of falling carbon-isotope values (δ13C) from 2.61 to ?0.25‰ in the upper part of OAE2 with the carbon-isotope segment C30 at Gabal Yelleg. The negative shift in δ13C values (C33) occurred in the Middle Turonian lowstand deposits characterizing the global sea level fall during this interval.  相似文献   

3.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

4.
This paper reports on the structural and sedimentary evolution of the middle to late Eocene of the Prepyrenean External Sierras (southern Pyrenees, Spain). The initiation, duration and kinematics of a set of growth structures that developed in a shallow marine depositional setting is documented. The detailed analysis of the syntectonic marine sediments not only confirms the already known east to west progression of deformation, but also reveals the continued growth of the early formed structures as later ones propagate towards the foreland. The sedimentary units coevally deposited with these growth structures are arranged in four depositional sequences. Their boundaries correspond to flooding surfaces which grade basinwards into correlative conformities. They are also indicated by the presence of both angular unconformities and onlap geometries. Each depositional sequence generally consists of two systems tracts. The lower one, or transgressive systems tract, is formed by up to 400 m of azoic marls deposited in outer ramp areas. The upper one, or highstand systems tract, mainly consists of shallow siliciclastic and carbonate facies, up to 200 m thick, deposited in middle to inner ramp areas. These depositional sequences are interpreted to be controlled by regional tectonic pulses. An increase of tectonic activity resulted in the flooding of the basin and in the subsequent deposition of a thick succession of nearly azoic blue marls (i.e. transgressive systems tract). The overlying highstand systems tract developed following periods of diminished tectonism, with the consequent growth and progradation of shallow carbonate platform facies.  相似文献   

5.
A high-energy Aptian–Albian platform margin in northern Oman fronted onto an open oceanic basin, making the area a valuable analogue for coeval guyot margins. Most similar aged carbonate margins described in the literature faced either intracratonic or minor oceanic basins. The studied margin is characterized by a stabilized outer rim, which, although it did not rise discernibly above the adjacent lagoonal deposits, flanked a steep upper slope (32–40°) basinwards with a relief of at least 30 m. Two main facies provided the rigidity of the outer margin: Lithocodium boundstones that constituted up to 50% of the rock volume; and marine fibrous cements that occluded up to 35% of primary pore space. In contrast, coral–rudist patches and other shelly sessile benthos were distributed irregularly, and the rudist bioherms of the outer margin were often disrupted, with shells being transported and redeposited. The inner margin is characterized by wedge-shaped storm layers that radiate from the platform top lagoonwards, where they interdigitate with carbonate sands and small rudist bioherms. Polygenetic discontinuity surfaces that bear evidence of both marine hardground and subaerial exposure stages are prominent features of the margin. Throughout the latest Aptian to Middle Albian, the platform succession recorded some 30 relative sea-level falls, of which seven reached amplitudes of many tens of metres. These seven high-amplitude falls in sea level are recorded across the entire south-eastern portion of the Arabian craton and are probably of eustatic origin.  相似文献   

6.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

7.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

8.
 贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

9.
对鄂西—湘西北地区多个沉积剖面的地层及沉积相进行了详细分析,结果表明,该区二叠纪栖霞期至茅口初期主要为内克拉通碳酸盐岩缓坡环境,发育内缓坡相、中缓坡相、外缓坡相和盆地相.内缓坡相以厚层至块状生物碎屑石灰岩为主,生物颗粒以绿藻和底栖有孔虫为主,缺乏高能沉积的生物颗粒.中缓坡相以中厚层含生物碎屑颗粒石灰岩以及厚层灰泥石灰岩...  相似文献   

10.
The Cenomanian–Turonian carbonate-dominated lithofacies of Israel reflect a complex interplay between tectonics, sea-level change, and palaeoecology. Improved correlation based on revision of the bio- and chronostratigraphic framework has enabled the establishment of a sequence-stratigraphic model comprising five sequences delineated by four sequence boundaries, in the Late Cenomanian–Early Coniacian interval. The Late Cenomanian–Turonian succession begins with prograding, highstand, carbonate-platform deposits of the first sequence. Interruption of progradation and drowning of this platform took place within the Late Cenomanian guerangeri Zone (=the vibrayeanus Zone in Israel), resulting in a drowning unconformity which is regarded as a Type 3 sequence boundary (labelled CeUp). The drowning is attributed in part to extinctions in the rudist-dominated biofacies (e.g., Caprinidae), which led to reduced carbonate production and enhanced the impact of the sea-level rise. Similar drowning of Tethyan platforms around the C/T boundary has been linked to the establishment of coastal upwelling and consequent eutrophication. Outer ramp hemipelagic facies (Derorim and the Lower Ora formations) replaced the platform carbonates, thickening substantially southwards in the Eshet-Zenifim Basin of southern Israel. Along the ancient continental slope (Mediterranean coastal plain) evidence of this drowning is obscured by submarine erosion, while in central and northern Israel the drowned section is represented by condensation or a hiatus, reflecting an elevated, sediment-starved sea-floor. A carbonate platform dominated by rudistid shoals (‘Meleke’ Member; Shivta Formation) was re-established in the Judean hills and northern Negev during the middle part of the Turonian coloradoense Zone (local zone T4). Later, during kallesi Zone times (T7), the platform facies prograded southwards towards the Eshet-Zenifim intra-shelf basin. The drowning succession and overlying resurrected carbonate platform are topped in central and southern Israel by a pronounced Type 1 sequence boundary (Tu1) between the kallesi (T7) and ornatissimum (T8) zones (Middle Turonian). In central Israel and northern Negev the sequence boundary is overlain by lowstand deposits of the ‘Clastic Unit’ and by the transgressive and highstand inner to mid-ramp deposits of the Nezer and Upper Bina formations. In the southern Negev the sequence boundary is overlain by lowstand and transgressive systems tracts of mixed carbonates, siliciclastics, and localized evaporites (Upper Ora Formation), and then by mid to inner ramp carbonates of the Gerofit Formation. The latter represents a very high rate of accumulation, indicating rapid, continued subsidence balanced by platform growth. The Tu2 sequence boundary of the Late Turonian is expressed in the southern Negev by a shift from inner ramp carbonates of the Gerofit Formation to outer ramp chalky limestones of the Zihor Formation, indicating localized drowning. The succeeding Co1 sequence boundary again indicates localized drowning of the prograding highstand deposits of the Zihor Formation (‘Transition Zone’) overlain by Lower Coniacian transgressive deposits of the upper part of the Zihor Formation. All of these third-order sequences are expressed in southern Israel, where the rate of subsidence was in balance with sea-level fluctuations. In contrast, the Judean Hills and eastern Galilee areas have a more incomplete succession, characterized by hiatuses and condensation, because of reduced subsidence. More distal areas of continuous deep-water deposition in western Galilee and the coastal plain failed to record the Middle Turonian lowstand, while a longer term, second-order sequence spanning the entire Late Cenomanian–Early Coniacian interval, is present in the Carmel and Yirka Basin areas.  相似文献   

11.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   

12.
The Quilalar Formation and correlative Mary Kathleen Group in the Mount Isa Inlier, Australia, conformably overlie rift-related volcanics and sediments and non-conformably overlie basement rocks. They represent a thermal-relaxation phase of sedimentation between 1780 and 1740 Ma. Facies analysis of the lower siliciclastic member of the Quilalar Formation and the coeval Ballara Quartzite permits discrimination of depositional systems that were restricted areally to either N-S-trending marginal platform or central trough palaeogeographic settings. Four depositional systems, each consisting of several facies, are represented in the lower Quilalar Formation-Ballara Quartzite; these are categorized broadly as storm-dominated shelf (SDS), continental (C), tide-dominated shelf (TDS) and wave-dominated shoreline (WDS). SDS facies consist either of black pyritic mudstone intervals up to 10 m thick, or mudstone and sandstone associated in 6–12-m-thick, coarsening-upward parasequences. Black mudstones are interpreted as condensed sections that developed as a result of slow sedimentation in an outer-shelf setting starved of siliciclastic influx. Vertical transition of facies in parasequences reflects flooding followed by shoaling of different shelf subenvironments; the shoreface contains evidence of subaerial exposure. Continental facies consist of fining-upward parasequences of fluvial origin and tabular, 0·4–4-m-thick, aeolian parasequences. TDS facies are represented by stacked, tabular parasequences between 0·5 and 5 m thick. Vertical arrangement of facies in parasequences reflects flooding and establishment of a tidal shelf followed by shoaling to intertidal conditions. WDS facies are preserved in 0·5–3-m-thick, stacked, tabular parasequences. Vertical transition of facies reflects initial flooding with wave reworking of underlying arenites along a ravinement surface, followed by shoaling from lower shoreface to foreshore conditions. Parasequences are stacked in retrogradational and progradational parasequence sets. Retrogradational sets consist of thin SDS parasequences in the trough, and C, TDS and probably WDS parasequences on the platforms. Thick SDS parasequences in the trough, and TDS, subordinate C and probably WDS parasequences on the platforms make up progradational parasequence sets. Depositional systems are associated in systems tracts that make up 40–140-m-thick sequences bounded by type-2 sequence boundaries that are disconformities. Transgressive systems tracts consist of C, TDS and probably WDS depositional systems on the platforms and the SDS depositional system and suspension mudstone deposits in the trough. The transgressive systems tract is characterized by retrogradational parasequence sets and developed in response to accelerating rates of sea-level rise following lowstand. Condensed-section deposits in the trough, and the thickest TDS parasequences on the platforms reflect maximum rates of sea-level rise and define maximum flooding surfaces. Highstand systems tract deposits are progradational. Early highstand systems tracts are represented by TDS and probably WDS depositional systems on the platforms and suspension mudstone deposits in the trough and reflect decreasing rates of sea-level rise. Later highstand systems tracts consist of the progradational SDS depositional system in the trough and, possibly, thin continental facies on the platforms. This stage of sequence development is related to slow rates of sea-level rise, stillstand and slow rates of fall. Lowstand deposits of shelf-margin systems tracts are not recognized but may be represented by shoreface deposits at the top of progradational SDS parasequence sets.  相似文献   

13.
Well‐cuttings, wireline logs and limited core and outcrop data were used to generate a regional, three‐dimensional sequence framework for Upper Mississippian (Chesterian), Greenbrier Group carbonates in the Appalachian foreland basin, West Virginia, USA. The resulting maps were used to document the stratigraphic response of the basin to tectonics and to glacio‐eustasy during the transition into ice‐house conditions. The ramp facies include inner ramp red beds and aeolianites, lagoonal muddy carbonates, mid‐ramp ooid and skeletal grainstone shoal complexes, and outer ramp wackestone–mudstone, that grades downslope into laminated silty lime mudstone. The facies make up fourth‐order sequences, a few metres to over 90 m (300 ft) thick. The sequences are bounded along the ramp margin by lowstand sandstones and calcareous siltstones. On the ramp, sequence boundaries are overlain by thin transgressive siliciclastics and aeolianites, and only a few are calichified. Maximum flooding surfaces on the outer ramp lie beneath deeper water facies that overlie lowstand to transgressive siliciclastic or carbonate units. On the shallow ramp, maximum flooding surfaces overlie siliciclastic‐prone transgressive systems tracts, that are overlain by highstand carbonates with significant grainstone units interlayered with lagoonal lime mudstones. The fourth‐order sequences are the major mappable subsurface units; they are bundled into weak composite sequences which are bounded by red beds. In spite of differential subsidence rates across the foreland basin (1 to 3 cm/k.y. up to 25 cm/k.y.), eustatic sea‐level changes controlled regional sequence development. Thrust‐load induced differential subsidence of fault‐blocks, coupled with in‐plane stress, controlled the rapid basinward thickening of the depositional wedge, whose thickness and facies were influenced by subtle structures such as arches trending at high angles as well as parallel to the margin.  相似文献   

14.
陈代钊 《地质科学》1997,32(4):432-444
贵州西部龙潭组主要含有6种沉积相组合:即浅海沉积、细粒滨岸平原沉积、溢岸沉积、小型河道砂体、叠置河道砂体和煤层。多层叠置砂体一般10-25m厚,2-10km宽,常含海绿石,切入下伏的三角洲平原、滨岸平原和浅海沉积中,被认为是下切谷充填。在龙潭组中共识别出广泛发育的10个层序界面,由此所限定的层序大致相当于4级旋回层序。在这些层序中,准层序或准层序组识别不出,然能识别体系域,层序几乎全由海进体系域(TST)和高位体系域(HST)组成,低位体系域(LST)发育不好。在垂向上,它们又可叠置成3级复合层序,并由低位、海进和高位层序组组成。在低位层序组中,河道下切常冲刷掉下伏层序的全部HST和部分TST,致使其与下伏层序的下切谷充填重合。在海进层序组中,下切作用最弱,具最小砂/泥比值,下切谷充填侧向孤立。高位层序组是低位和海进层序的过渡类型,下切谷充填也趋于孤立。  相似文献   

15.
The lower part of the Early Cambrian Sekwi Formation in the Selwyn Basin of the Northwest Territories, Canada, is composed of two regional, unconformity‐bounded sequences, S0 and S1, which record the first widespread carbonate deposition during the initial Palaeozoic transgression onto the western margin of Laurentia. These Early Cambrian sequences are unique to the western North American Cordillera, representing the only record of primarily deep‐water deposition on a tectonically active, mixed carbonate–siliciclastic ramp during this period. More specifically, the geometry of the Sekwi ramp changed during deposition of S0 and S1, from a shallowly dipping homoclinal ramp during the S0 transgressive systems tract to a steeply dipping tectonically modified ramp during the early highstand systems tract of S0. The steeply dipping ramp profile of S0 was preserved into the early transgressive systems tract of S1. The Sekwi ramp returned to a gently sloping ramp during the late highstand systems tract of S1 and remained so throughout the remainder of Sekwi deposition. The evolving shape of the Sekwi ramp is attributed to syndepositional ‘down to the basin’ faulting during deposition of both S0 and S1 and is recorded by: (i) the westward thickening, irregular geometries of S0 and S1; (ii) geographical restriction of deep‐water facies (including sediment gravity flow deposits); (iii) the presence of large allochthonous blocks; and (iv) the clast composition of sediment gravity flow deposits. Sediment gravity flow deposits play an unusually important role in the sequence stratigraphic interpretation of the lower Sekwi Formation, as they delineate depositional packages, including the maximum flooding zone, the transitions between portions of systems tracts, and the inferred locations of syntectonic extensional faults. Syntectonic faults increased accommodation basinward of an extensive ooid‐shoal complex that developed along the Sekwi ramp crest, greatly influencing sequence geometry and initiating the downslope motion of sediment gravity flows. The syndepositional faulting probably was a continuation of extension that began during the latest Neoproterozoic rifting of western Laurentia. The composition of sediment gravity flow deposits track changing accommodation space on the lower Sekwi ramp and can be used to differentiate systems tracts that probably were related more to tectonism than eustasy.  相似文献   

16.
We studied upper Albian to Turonian shallow-marine shelf deposits (Ajlun Group) of west central Jordan along a NNE-SSW running transect. The carbonate-dominated succession includes few siliciclastic intercalations, claystones and shales, and can be subdivided into five formations. The Naur, Fuheis and Hummar Formations of upper Albian to upper Cenomanian age represent shallow subtidal to supratidal platform environments. The uppermost Cenomanian to middle Turonian Shueib Formation includes deeper water deposits of the inner/mid-shelf and locally TOC-rich black shales. Shallow-marine platform environments once again dominate the Wadi As Sir Formation (middle-upper Turonian). A new multibiostratigraphic framework is based on ammonites (mainly of the middle Cenomanian rhotomagense Zone to the middle Turonian woollgari Zone) and calcareous nannofossils (biozones CC 9–CC 11), supplemented by benthic and planktonic foraminifers and ostracods. It forms the base of a sequence stratigraphic subdivision, containing eight sedimentary sequences (S1–S8), which are separated by four Cenomanian sequence boundaries (CeJo1–CeJo4) and three Turonian sequence boundaries (TuJo1–TuJo3). This scheme allows the correlation of the platform succession from distal to proximal shelf areas in contrast to previous correlations using lithologic units. Furthermore, comparisons between the platform successions and sequence patterns of west central Jordan and those from neighbouring areas allow to differentiate local, regional, and global controlling factors of platform development within the study area.  相似文献   

17.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


18.
中部4区块位于准噶尔盆地腹部的昌吉凹陷,侏罗纪时堆积了浅水辫状三角洲相粗粒砂砾岩与深水湖泊相泥岩沉积,这些沉积在D2井区显示出多个明显的旋回.根据沉积相序变化、准层序叠加样式、测井曲线特征,通过伴生的低水位域底界面的识别及附近的超失、削截特征分析,仔细追踪和查明了10条关键层序界面,划分出9个三级层序,识别出低水位、湖进和高水位体系域.由于处于关键坡折带的下倾方向,每个层序均具有完整的三分结构,年限平均约5Ma,共识别出27个体系域,准层序组62个,准层序148个.单个层序厚度平均209.3m,单个准层序组平均厚30.4m,单个准层序平均厚13.0m.  相似文献   

19.
The mainly continental deposits of northwest Sudan and south-west Egypt have been correlated with coeval shallow marine and marine deposits in northern Egypt along a north-south running cross-section, based on surface and subsurface data. The palaeodepth curve of northern Egypt illustrates the gradual seal-level rise, reaching its maximum during the Late Cretaceous with conspicuous advances during the Aptian and late Cenomanian. A general highstand is also recorded during the Campanian-Maastrichtian in north-west Sudan. A detailed facies correlation is given for the Aptian and late Cenomanian highstand in western Egypt. The correlation of the Cenomanian Bahariya and Maghrabi formations displays short-term relative sealevel fluctuations. The interpretation illustrates the extensiveness of related erosional processes in the hinterland, partly intensified by temporarily uplift of the Uweinat-Aswan High in the south. Regional uplift and constant erosion took place in south-west Egypt during Coniacian and Santonian times. The regional stratigraphic gaps and uncertain interpretation of the Bahariya Uplift are induced by the influence of the Trans-African Lineament, especially during the Late Cretaceous. Low-stand fluvial sheet sandstones characterized by non-cyclic sequence development and high facies stability occur, especially in the Neocomian and early Turonian. During the Barremian and Albian, fluvial architecture changes to more cyclic fluvial sequences and increasing soil formation, due to increasing subsidence, more humid climatic conditions and the generally rising sea level, culminating in the extensive shallow marine Abu Ballas and Maghrabi formations.  相似文献   

20.
The Pennsylvanian Pikeville, Hyden and Four Corners formations of the Breathitt Group in eastern Kentucky, USA, contain six major facies associations along with a number of subassociations. These facies associations are offshore siltstone, rhythmically bedded mouthbar heteroliths, predominantly fine-grained floodplain deposits, minor channel fills, major distributary channels and major, stacked fluvial bodies. The stacked fluvial bodies are incised into a variety of open marine and delta plain deposits, have widths of several kilometres and exhibit a range of sandy fill types. These fluvial complexes are interpreted as incised valley fills. Parasequences and parasequence sets are not identifiable. Nonetheless, it is possible to identify systems tracts on the basis of sequential position, facies associations and systematic changes in architectural style and sediment body geometries. The studied portion of the Breathitt Group comprises stacked 4th-order sequences, which occur in lowstand, transgressive and highstand sequence sets related to the development of a lower frequency base level cycle. In the lowstand sequence set, incision associated with successive 4th-order sequence boundaries has commonly removed all the HST and TST of the underlying sequences, such that succeeding 4th-order incised valley fills are amalgamated. Within the transgressive sequence set, incision is at a minimum and incised valley fills tend to stack discretely with the maximum amount of fine-grained TST and HST between them. The highstand sequence set is transitional between the lowstand and transgressive sequence sets in terms of the amount of transgressive and highstand deposits preserved. Incised valley fills tend to stack discretely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号