首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
顺层岩质边坡的抗震性指标大部分都是非确定的,无法用固定阈值衡量。提出基于非确定性分析法的顺层边坡抗震性性能研究,将顺层岩质边坡看作若干个叠加的薄板;运用非确定性分析法计算各个薄板的动力安全系数和动力极限状态方程,并对顺层边坡动力极限状态方程进行求解,可得在地震作用力下顺层边坡动力可靠度指标与顺层边坡失效概率之间的关系;评估地震作用力下顺层边坡整体稳定性,同时综合考量顺岩边坡的最小平均安全系数以及平均失效概率,得出评估结果。实验结果显示,在地震作用力下,顺层边坡坡高、坡角、岩层倾角对顺岩边坡抗震性能影响显著,评估结果与实际结果一致。  相似文献   

2.
地震作用下节理岩质边坡稳定性影响因素研究   总被引:1,自引:0,他引:1  
汶川地震灾害调查表明,在基岩山区地震滑塌主要发育在局部强度相对较大、节理较发育的厚层或块状岩体中.以岩石中含两组节理的岩质边坡为例,输入实际的地震记录,采用离散单元法进行数值模拟,分别探讨坡高、地震烈度、坡角及节理倾角组合对节理岩质边坡稳定性的影响.结果表明:地震作用下坡体中质点的加速度、速度具有高程放大效应;节理岩质边坡稳定性随着坡高、坡角和地震烈度的增加而降低;两组节理不同组合的岩质边坡,其稳定性变化较为复杂,受节理倾角与坡角的关系、节理的倾向、两组节理之间夹角等因素的影响.节理岩质边坡在地震作用下是受拉区逐渐向受剪区扩展而最终导致边坡失稳破坏,是受拉和受剪的复合破坏.上述初步结论为评价山区节理较发育的岩质边坡在地震作用下的稳定性提供一定的依据.  相似文献   

3.
梁承龙  刘芳 《地震工程学报》2022,44(5):1050-1058
裂缝常存在于边坡表面,地震作用会大幅降低裂缝边坡稳定性。针对双层土裂缝边坡稳定性问题,定义上下土层分界处高度与边坡高度之比为深度系数以描述双层土的分布,基于极限分析上限定理,构建“点到点”离散运动学机构,并在此机构中引入一条垂直张拉裂缝,结合拟静力法和强度折减法建立能量平衡方程求解裂缝边坡临界高度和安全系数上限解。计算结果与传统上限法进行对比,验证离散运动学机构的有效性及其解的优越性,同时探究土体非均质性及深度系数对裂缝边坡稳定性以及裂缝深度和位置的影响规律。结果表明,地震作用会降低边坡稳定性;随着地震力增大,边坡临界滑动面逐渐加深,裂缝深度略微增大,裂缝位置逐渐远离坡面;对于具体的双层土边坡会存在一个特定的深度系数使边坡安全系数达到最值,同时裂缝会穿越至下层土且深度发生突增。  相似文献   

4.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   

5.
We present a combined 3-D geoelectric and seismic tomography study conducted on the large Åknes rockslide in western Norway. Movements on the slope are strongly influenced by water infiltration, such that the hydrogeological regime is considered as a critical factor affecting the slope stability. The aim of our combined geophysical study was to identify and visualize the main shallow tension fractures and to determine their effect on hydraulic processes by comparing the geophysical results with information from borehole logging and tracer tests. To resolve the complex subsurface conditions of the highly fractured rock mass, a three-dimensional set-up was chosen for our seismic survey. To map the water distribution within the rock mass, a pattern of nine intersecting 2-D geoelectric profiles covered the complete unstable slope. Six of them that crossed the seismic survey area were considered as a single data set in a 3-D inversion. For both methods, smoothing-constraint inversion algorithms were used, and the forward calculations and parameterizations were based on unstructured triangular meshes. A pair of parallel shallow low-velocity anomalies (< 1400 m/s) observed in the final seismic tomogram was immediately underlain by two anomalies with resistivities <13 kΩm in the resistivity tomogram. In combination with borehole logging results, the low-velocity and resistivity anomalies could be associated with the drained and water-filled part of the tension fractures, respectively. There were indications from impeller flowmeter measurements and tracer tests that such tension fractures intersected several other water-filled fractures and were responsible for distinct changes of the main groundwater flow paths.  相似文献   

6.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

7.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

8.
In this paper, kinematical element method (KEM) is extended to the solution of seismic slope stability with the pseudo-static approach. Analytical expressions are derived to calculate the factor of safety of slopes subjected to seismic loading and pore-water pressure. KEM is adopted to assess seismic stability of slope and some examples show that the results obtained from KEM, limit equilibrium method (LEM), variational method and strength reduction method (SRM) are generally in good agreement. And then the seismic slope stability charts are developed on the basis of KEM and pseudo-static approach, providing a rapid and reliable way to calculate the factor of safety and the location of critical slip surface without iteration. Based on the above seismic slope stability charts, a new back analysis method is presented. KEM and pseudo-static approach are applied to study the effect of blasting on the stability of open pit slope, and the approach to determine the relationship between critical explosive weight and distance is presented.  相似文献   

9.
利用FLAC3D软件模拟地震作用下不同岩层倾角的顺倾向边坡,对比坡面峰值加速度放大系数、峰值位移、地震作用结束后坡体剪应变增量的变化规律,探讨岩层倾角对顺倾边坡地震效应的影响。研究表明:(1)在水平地震波作用下,坡面水平峰值加速度放大作用随岩层倾角增大而线性减小;(2)当岩层倾角小于软弱岩层内摩擦角时,坡面峰值位移较小且变化规律受岩层倾角影响不明显,当岩层倾角大于软弱岩层内摩擦角且小于30°时坡面峰值位移增大,大于60°时减小;(3)岩层倾角小于坡角时,残余剪应变增量最大值集中在坡面中下部软弱岩层处,反之,剪应变增量最大值出现在整个坡面并呈弧形区。  相似文献   

10.
Wide-azimuth seismic data can be used to derive anisotropic parameters on the subsurface by observing variation in subsurface seismic response along different azimuths. Layer-based high-resolution estimates of components of the subsurface anisotropic elastic tensor can be reconstructed by using wide-azimuth P-wave data by combining the kinematic information derived from anisotropic velocity analysis with dynamic information obtained from amplitude versus angle and azimuth analysis of wide-azimuth seismic data. Interval P-impedance, S-impedance and anisotropic parameters associated with anisotropic fracture media are being reconstructed using linearized analysis assuming horizontal transverse anisotropy symmetry. In this paper it is shown how additional assumptions, such as the rock model, can be used to reduce the degrees of freedom in the estimation problem and recover all five anisotropic parameters. Because the use of a rock model is needed, the derived elastic parameters are consistent with the rock model and are used to infer fractured rock properties using stochastic rock physics inversion. The inversion is based on stochastic rock physics modelling and maximum a posteriori estimate of both porosity and crack density parameters associated with the observed elastic parameters derived from both velocity and amplitude versus angle and azimuth analysis. While the focus of this study is on the use of P-wave reflection data, we also show how additional information such as shear wave splitting and/or anisotropic well log data can reduce the assumptions needed to derive elastic parameter and rock properties.  相似文献   

11.
Seismic stability analysis of reinforced slopes   总被引:4,自引:0,他引:4  
In this paper, the seismic stability of slopes reinforced with geosynthetics is analysed within the framework of the pseudo-static approach. Calculations are conducted by applying the kinematic theorem of limit analysis. Different failure modes are considered, and for each analytical expressions are derived that enable one to readily calculate the reinforcement force required to prevent failure and the yield acceleration of slopes subjected to earthquake loading. Several results are presented in order to illustrate the influence of seismic forces on slope stability. Moreover, a suitable procedure based on the assessment of earthquake-induced permanent displacement is proposed for the design of reinforced slopes in seismically active areas.  相似文献   

12.
丁学文  李国珍  丁志平  李申  冯凯宇 《地震工程学报》2020,42(6):1632-1640,1722
为了研究太原市太山龙泉寺拟建舍利塔边坡稳定性,对所在场地及外围地形地貌、地层、地质构造、水文条件进行了调查。结合7个探井,确定了塔址所在场地的土质边坡体可能失稳的模式,进行了边坡稳定性分析、计算。结果表明,场地在自然状态下边坡稳定系数为1.37,在烈度为Ⅷ、Ⅸ度地震影响下边坡稳定系数分别为1.24、1.15。根据《建筑边坡工程技术规范》(GB50330-2013),塔址所在边坡是稳定的,不必对边坡进行处理;其次结合3个探槽揭露,发现场地北侧基岩边坡曾发生过滑动,据其滑动面倾角、滑动量及错断地层特征,认为是一种特殊边坡变形破坏-岩体错落,为崩塌与滑坡之间的中间类型,从现存的地形地貌特征分析,现阶段错落体已趋于基本稳定状态,稳定性较好;最后给出了预防边坡滑动的建议和措施,研究结果可为其他类似边坡场地地震稳定性研究提供参考借鉴。  相似文献   

13.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

14.
In this study, a finite element limit analysis method is developed to assess the seismic stability of earth-rock dams. A pseudo-static approach is employed within the limit analysis framework to determine the lower and upper bounds on the critical seismic coefficients of dams. The interlocking force in the soil is considered, and the rockfill material is assumed to follow the Mohr–Coulomb failure criterion and an associated flow rule. Based on the native form of the failure criterion, the lower and upper bound theorems are formulated as second-order cone programming problems. The nonlinear shear strength properties of rockfill materials are also considered. The developed finite element limit analysis is applied to two different types of earth-rock dams. The results indicate that the rigorous lower and upper bounds are very close even for rockfill materials with large internal friction angles. The failure surfaces are easily predicted using the contour of the yield function and the displacement field obtained by the limit analysis method. In addition, the pore water pressures are modelled as external forces in the limit analysis to assess the seismic stability of earth-rock dams in the reservoir filling stage.  相似文献   

15.
基于极限分析上限定理,考虑堆石料内摩擦角较大以及抗剪强度具有非线性的特性,提出一个用于求解土石坝极限抗震能力的有限元计算方法。该方法通过功能平衡条件、位移协调条件、边界条件、屈服条件以及所求极限荷载,形成标准的二阶锥规划数学模型,并用内点法进行优化迭代求解,得到土石坝坡极限抗震能力的上限值。运用该方法对一个典型面板堆石坝进行抗震极限分析。结果表明:按规范设计的土石坝具有较强的抗震能力,且竖向地震力对大坝的极限抗震能力存在一定影响;此外上限有限元法具有较高的计算精度及工程实用价值。  相似文献   

16.
Experimental measurements of fracture-induced seismic waves velocity variations at frequencies ~ 1 kHz, ~ 40 kHz and ~ 1 MHz were performed directly in the field at the rocky outcrop and in the laboratory on specific rock samples collected from the outcrops. The peridotite–lherzolite outcrop appeared macroscopically uniform and contained three systems of visible parallel sub-vertical fractures. This rock has substantial bulk density and higher than average value of seismic wave velocity. The presence of fracture systems gives rise to its velocity anisotropy. The seismic waves passing through the rock fractures are subject to velocity dispersion and frequency dependent attenuation. Our data, obtained from field and laboratory measurements, were compared with theoretical model predictions. In this model we successfully used displacement discontinuity approach. For the velocity dispersion evaluation we used multi-frequency measurements. The a priori observation of orientations and densities of fracture sets allowed evaluation of their stiffness. Our approach revealed that the first arrivals of seismic waves can be used for evaluation of P-wave group velocities, the specific case, in which we expect anomalous velocity dispersion. Our observations contribute to the issue of up-scaling of well-log derived velocities in fractured rock to the scale of standard seismic exploration frequencies.  相似文献   

17.
Excavation induced seismic events with moment magnitudesM<0 are examined in an attempt to determine the role geology, excavation geometry, and stress have on scaling relations. Correlations are established based on accurate measurements of excavation geometry and methodology, stress regime, rock mass structure, local tectonics, and seismic locations. Scaling relations incorporated seismic moments and source radii obtained by spectral analysis, accounting for source, propagation, and site effects, and using Madariaga's dynamic circular fault model. Observations suggest that the interaction of stresses with pre-existing fractures, fracture complexity and depth of events are the main factors influencing source characteristics and scaling behaviour. Self-similar relationships were found for events at similar depths or for weakly structured rock masses with reduced clamping stresses, whereas a non-similar behaviour was found for events with increasing depth or for heavily fractured zones under stress confinement. Additionally, the scaling behaviour for combined data sets tended to mask the non-similar trends. Overall, depth and fracture complexity, initially thought as second order effects, appear to significantly influence source characteristics of seismic events withM<0 and consequently favour a non-similar earthquake generation process.  相似文献   

18.
张彦君  年廷凯  郑路  刘凯  宋雷 《地震工程学报》2015,37(2):428-433,438
以往对平面破坏模式的岩质边坡稳定性评价,主要关注潜在滑坡体在自重、坡体内静水压力和地震荷载耦合作用下沿破坏面的抗滑稳定性,并未涉及各类外荷载作用线不通过潜在滑体重心而引起的绕坡趾倾覆稳定性。针对这一问题,提出地震与张裂缝水压耦合作用下的岩质边坡倾覆稳定性解析方法,基于力矩平衡原理推导出岩质边坡抗倾覆稳定性系数的一般表达式;通过深入的变动参数比较研究,探讨张裂缝水压和地震荷载对抗倾覆安全系数的影响,认为水压是控制岩质边坡倾覆破坏的决定性因素,而地震荷载处于次要因素,其在一定程度上增加或减小抗倾覆稳定性。在此基础上建立不同参数组合下的岩质边坡抗倾覆稳定图,为工程技术人员快速评估饱水岩质边坡地震倾覆稳定性提供直接依据。  相似文献   

19.
高角度缝隙充填的碳酸盐岩储层可以等效为具有水平对称轴的横向各向同性介质.本文提出了适用于裂缝型碳酸盐岩的岩石物理模型构建流程,重点介绍了在碳酸盐岩各向同性背景中,综合利用微小裂隙模型和线性滑动模型添加缝隙系统,并分析了当缝隙充填不同流体时,各向异性参数随纵横波速比的变化特征.同时本文讨论了裂缝密度和缝隙充填流体对地震反射系数的影响,推导了不同类型流体充填时储层反射系数与裂缝密度的近似关系式,阐述了各向异性流体替换理论,最终实现饱含流体碳酸盐岩裂缝储层的纵横波速度和各向异性参数的估测.选取某碳酸盐岩工区A井对该方法进行试算,结果表明基于碳酸盐岩裂缝岩石物理模型估算的纵横波速度值与测井值吻合较好,而且估测所得的各向异性参数值也能够较好地反映出裂缝储层位置.  相似文献   

20.
Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves. However, for rock slopes, the earthquake waves might approach the outcrop still with a evidently oblique direction. To investigate the impact of obliquely incident earthquake excitations, the input method for SV and P waves with arbitrary incident angles is conducted, respectively, by adopting the equivalent nodal force method together with a viscous-spring boundary. Then, the input method is introduced within the framework of ABAQUS software and verified by a numerical example. Both SV and P waves input are considered herein for a 2D jointed rock slope. For the jointed rock mass, the jointed material model in ABAQUS software is employed to simulate its behavior as a continuum. Results of the study show that the earthquake incident angles have significance on the seismic stability of jointed rock slopes. The larger the incident angle, the greater the risk of slope instability. Furthermore, the stability of the jointed rock slopes also is affected by wave types of earthquakes heavily. P waves induce weaker responses and SV waves are shown to be more critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号