首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
以能量平衡方程为基础,考虑太阳短波辐射、大气和地面的长波辐射、潜热、感热传输以及下垫面的热传导等能量之间的平衡,建立了利用常规气象观测资料预测雪面温度和积雪深度变化的融雪模型。利用2009年1—3月以及2009年12月—2010年1月在湖北恩施雷达站的积雪观测数据进行模拟和验证,结果表明:该模型对于雪面温度和积雪深度都有较好的模拟效果。当下垫面导热系数λg〈0.5时,下垫面对雪深的影响很小;当λg≥0.5时,积雪融化速度随λg的增大而加快,说明下垫面的热传导是影响积雪深度变化的主要因素之一。  相似文献   

2.
中国西天山季节性积雪热力特征分析   总被引:3,自引:0,他引:3  
高培  魏文寿  刘明哲 《高原气象》2012,31(4):1074-1080
利用中国天山积雪雪崩站干、湿雪雪层内每隔5min一次的10层雪温数据,探讨了一次降雪过程后干、湿雪的雪层温度特征,对比分析了干、湿雪的雪面能量平衡方程中各分量的差异。结果表明:(1)整个冬半年积雪各层温度基本<0℃,雪温日变化振幅由雪面向下逐渐减小,积雪深层温度的波峰(谷)值稍滞后于积雪浅层温度极值1~2天。(2)湿雪冷中心的出现时间早于干雪,暖中心的出现时间晚于干雪,太阳辐射对湿雪的穿透深度大于干雪。(3)雪层温度振幅变化与能量吸收随雪深都呈指数衰减分布。积雪密度越大,吸收系数越小,穿透深度越大。(4)干雪雪面的感热通量和潜热通量几乎都为负值,积雪积累。湿雪雪面的潜热通量与感热通量方向相反,互相抵消,所以净辐射是导致湿雪消融的主要因素。  相似文献   

3.
青藏高原积雪对地表能量和水分交换有重要影响。本文通过选取青藏高原东部玛多、玛曲和垭口3个站点多雪年和少雪年的气象资料,对比分析了多雪年和少雪年的地表能量和土壤水热特征。结果表明:在地表辐射平衡方面,多雪年或积雪较多的时期可以反射掉较多的向上短波辐射。玛多站多雪年反射掉的向上短波辐射是少雪年的2.3倍,玛曲站主要积雪期(3-5月)中多雪时期比少雪时期多反射掉10.07 W·m-2的向上短波辐射,垭口站多雪年的年平均向上短波辐射分别比两个少雪年高出37.49 W·m-2和31.92 W·m-2。多雪年或积雪较多的时期还可以减少向上长波辐射的发射。玛多站多雪年与少雪年向上长波辐射的差值在整个研究时段中基本为负,垭口站两个少雪年在当年12月初到次年1月和次年2月末到4月初这两个时段,积雪越深,向上长波辐射值越小。向上短波和向上长波辐射的差异使得多雪年的地表净辐射少于少雪年。不论多雪年还是少雪年,土壤热通量的值都很小,地表能量分配主要以感热通量和潜热通量为主。玛多站少雪年以感热通量为主且感热通量为正,但多雪年感热通量为负;玛曲站的...  相似文献   

4.
本文通过对中国科学院天山积雪与雪崩研究站不同开阔度森林下积雪表面短波辐射的观测研究,分析了森林积雪短波辐射收支特征,短波辐射透射率。结果表明:阴坡林下积雪表面短波辐射小于阳坡,且随森林开阔度的减小而减小;林下雪面短波辐射和净短波辐射随太阳高度角增加而逐渐增加,不同开阔度林下雪面短波辐射和净短波辐射的差异也随太阳高度角的增加而不断增大;阳坡、阴坡林冠上方和80%开阔度林下积雪短波辐射在晴天日变化呈单峰型,林下积雪短波辐射峰值出现时间由林冠上方直接辐射和散射辐射的相对关系决定;多云天气,短波辐射的日变化特征取决于云量的变化;林冠开阔度越大,其短波辐射率越大,日平均短波辐射透射率随太阳高度角的增加而增加,且开阔度越大,其增加速率越快,短波辐射透射率日变化呈“U”型,早晚大于12:00~17:00。  相似文献   

5.
张戈  赖欣  刘康 《高原气象》2023,(3):575-589
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G  相似文献   

6.
《高原气象》2021,40(3):495-509
选取2014-2018年黑河流域中下游不同类型下垫面(荒漠、玉米田、湿地、胡杨、胡杨柽柳混合林)的站点观测数据,定量比较了不同下垫面地表能量收支的变化;探讨了不同气象要素以及灌溉作用对潜热输送的影响。结果表明:潜热的年变化与向下短波辐射以及气温的年变化保持一致;不同下垫面能量收支差异较大,玉米田下垫面月均潜热峰值可达200 W·m~(-2),荒漠下垫面只有100 W·m~(-2);荒漠下垫面潜热季节变化幅度较小,湿地、混合林和胡杨林的季节变化更为明显,变化幅度更大,其中湿地最大;玉米田下垫面潜热通量受灌溉的影响较大,灌溉导致土壤湿度突然增大,潜热通量也随之迅速增大;地表热通量在能量收支中占比较小,且随季节变化不大,在各个下垫面均是如此。  相似文献   

7.
青藏高原复杂下垫面能量和水分循环季节变化特征分析   总被引:2,自引:2,他引:0  
为深入认识青藏高原能量和水分循环季节变化,利用GSWP(Global Soil Wetness Project)、GLDAS(Global Land Data Assimilation System)、AMSR-E(Advance Microwave Scanning Radiometer-EOS)土壤湿度以及台站观测资料等多种数据,采用滑动t检验初步分析高原下垫面各物理量季节变化特征。结果表明:各物理量季节变化特征明显且联系密切。高原下垫面净短波辐射和感热通量在1月中旬显著开始增加,5~6月达到全年最高值。净长波辐射5月表现为高值,夏季表现为低值。地表潜热通量在1月显著开始增加,在夏季达到全年最高值。表层土壤3月开始输送热量到大气,9月大气开始向土壤表层传递热量;融雪3~5月加快,雪盖减少。降水和1 cm植被含水量在2月显著开始增加,1 cm土壤显著开始加湿,5~6月降水陡增,1 cm土壤湿度表现为峰值。1 cm植被含水量、植被蒸腾、总蒸散与降水在7~8月达全年最高值,1 cm土壤湿度在7月表出现为谷值,9月达全年第二峰值。10月下垫面温度转冷后,雪盖增加,土壤湿度逐渐减小。  相似文献   

8.
利用青海玛沁微气象观测站降雪过程的观测数据,探讨了积雪覆盖对土壤温度,土壤体积含水量、土壤热通量及地表能量交换的影响。结果表明:积雪覆盖对浅层土壤温度的影响较为显著,而对深层土壤温度的影响十分微弱。地表有积雪覆盖时,浅层土壤温度日平均值升高,日变化幅度减小,日最低值升高,温度梯度绝对值减小。土壤完全冻结状态下土壤体积含水量几乎不受积雪覆盖影响,土壤融化状态下积雪覆盖会导致浅层土壤体积含水量日变化幅度减小,而对深层土壤体积含水量没有影响。积雪覆盖会减小浅层土壤热通量的日变化幅度。在总辐射相同的晴天条件下,当地表有积雪覆盖时,由于积雪的高反照率导致向上短波辐射增加,净辐射减小,同时感热通量减小而潜热通量增加,感热占比(H/Rn)下降,潜热占比(LE/Rn)升高。  相似文献   

9.
热带太平洋-印度洋海温异常综合模的数值模拟   总被引:1,自引:0,他引:1  
通过数值模拟及结果的合成分析,对热带太平洋-印度洋异常海温综合模态的三维热力结构、动力结构及其发生发展的可能机制进行了研究.数值模拟结果的分析表明,太平洋、印度洋海温异常的综合模态在表层、次表层的表现都很明显,即在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高),该模态还存在着显著的年变化特征、年际变化特征以及年代际变化特征.数值模拟的合成分析结果表明,异常的海表风应力引起表层洋流异常,表层洋流异常及由其引起的海表高度异常可导致次表层海水环流的异常,海洋环流异常导致的平流热输送异常是海温形成异常综合模态的主要原因之一,垂直输送是形成次表层海温综合模态的主要原因.平流热输送过程对海表温度变异的贡献是:在事件发生到盛期阶段促进了次表层海温异常综合模态的形成,在盛期到消亡阶段次表层的平流过程阻碍其进一步发展;短波辐射是海洋的主要热力来源,海表面异常的净短波辐射通量、潜热通量是表层海温形成异常模态的主要热力学原因,异常的海表面净短波辐射通量、潜热通量、感热通量在到达盛期阶段后抑制其进一步发展.  相似文献   

10.
基于能量平衡的融雪期雪层水热过程研究   总被引:1,自引:0,他引:1  
积雪融化过程是能量驱动下积雪相态变化的物理过程,受众多因素影响。为定量描述积雪消融过程,本文依据能量平衡和水量平衡原理,构建单层融雪模型。利用该模型分析了天山北坡军塘湖流域点尺度积雪融化过程中能量项和融雪水量变化情况,模型模拟结果与实测值较为符合,该模型有助于理解季节性积雪区积雪融化物理变化过程,为寒区水资源的管理和利用等提供理论依据。  相似文献   

11.
半干旱地区吉林通榆"干旱化和有序人类活动"长期观测实验   总被引:38,自引:10,他引:28  
简单介绍了吉林通榆"干旱化和有序人类活动"长期观测实验,该实验站同时也是国际协同加强观测计划(CEOP)的地面观测站.分析了2002年10月~2003年3月(CEOP-EOP3)非生长季观测到的近地面层微气象及能量通量资料.结果表明,在非生长季,半干旱地区农田和退化草地下垫面近地面层能量收支基本一致;感热通量占主要地位,占净辐射通量的70%左右;潜热通量及地热流都很小,通常小于30 W m-2.土壤温度日变化主要集中在地表以下20 cm土壤层,20 cm以下土壤温度日变化很小,但存在明显的季节变化.在非生长季,土壤表层10 cm厚度内,草地下垫面土壤体积含水量比农田大;20 cm以下深度土壤体积含水量的日变化很小,同样存在季节变化.  相似文献   

12.
《高原气象》2021,40(3):455-471
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m~(-2)左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m~(-2)左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累期较短,降雪对土壤同样起明显的降温作用。  相似文献   

13.
2008年4—10月在中国南海西沙永兴岛近海进行了第4次海-气通量观测试验,获得了整个夏季风期间近海面层湍流脉动量及辐射、表层水温、波浪及距水面3.5、7.0、10.5m高度温、湿、风梯度观测资料,根据涡动相关法和COARE3.0法计算结果研究了2008年南海西南季风爆发、发展、中断、衰退包括暴雨、台风、冷空气影响等天气过程中海-气通量交换和热量收支变化。结果表明:(1)季风爆发前的晴天太阳总辐射强,而海洋失热量较小,热量净收支为较大正值,海面温度迅速升高。季风爆发期太阳总辐射仍然较强,大气长波辐射也有所增强,而海面长波辐射变化很小,故海面净辐射收支仍为正值;(2)季风活跃期特别是降水阶段感热通量增大,季风中断阶段变小;季风活跃期虽然潜热通量增大,由于太阳短波辐射没有减少,海洋净热量收支稍有盈余;中断阶段潜热通量、感热通量减少,海洋吸热大于季风活跃期;降水阶段由于太阳短波辐射减小,感热通量增大,海洋热量收支出现较大负值,海面温度很快降低。季风衰退期风力减弱,湿度减小,潜热通量减小,海洋热量收入又出现较大正值,海面温度回升;(3)台风影响过程中潜热通量随着风速增强迅速增大;感热通量因降水情况不同而有差异,晴天时减小,大雨时剧烈增大;由于太阳短波辐射减少、潜热通量剧增,海洋热量净收支出现负值,促使海面温度迅速降低;(4)动量通量主要与海表面风速有关;动量通量τ与风速V的关系可以表示为τ=0.00171v~2-0.003809v+0.02213。  相似文献   

14.
利用位于三江源腹地的玉树州隆宝自然保护区野外雪深自动观测站2013/2014年冬季每30 min积雪深度与同步气温数据,对发生在2014年2月的较大降雪过程的动态融雪过程及其同步气温进行了研究分析。结果表明,玉树隆宝地区融雪过程总体表现为"先慢后快"的变化特征,积雪在10 cm以上时融雪过程相对缓慢,在10 cm以下时,积雪加速消融,积雪越薄,融雪越快;在融雪期内,雪深快速下降分别发生在10:00(北京时,下同)11:00与14:00 15:30;气温与雪深变化关系紧密,09:00以前,雪深的下降与气温的关系不明显,09:00以后气温开始对雪深的变化产生比较明显地影响,这种相关性在10:00后明显增强,热量条件对积雪消融的影响自10:30一直持续到18:00;相对而言,13:00 14:00气温对日积雪消融的贡献最大。超前滞后关系分析表明,融雪期之前240 min之内的气温都将显著影响到积雪雪深的变化;玉树隆宝地区积雪在气温-12℃时仍有积雪深度下降的现象发生,正变温对积雪消融更有利。  相似文献   

15.
南海夏季风爆发前后海-气界面热交换特征   总被引:20,自引:1,他引:20  
文中利用 2 0 0 0与 2 0 0 2年二次南海海 气通量观测资料和同期西沙站资料 ,研究了南海夏季风爆发前后海洋表面热收支变化特征。研究表明 :南海夏季风爆发前后 ,影响海面热收支变化的主要分量是净短波辐射通量和潜热通量 ,在季风爆发前后不同阶段 ,二个分量的变化有不同表现形式 ,但不论二者如何变化 ,季风爆发与活跃期 ,海面热收入减小或为净支出 ;季风爆发前及中断期间 ,海面热收入逐渐增加 ;由于大的热惯性 ,海温变化落后于海面热收支的变化 ,海温的这种滞后效应通过影响潜热通量调节海面热收支的变化 ,又反过来影响自身的变化 ,形成短期振荡过程 ,这种振荡过程与季风的活跃、中断过程相对应。  相似文献   

16.
利用2011年10月至2017年12月黄河源区鄂陵湖野外观测数据,对比分析多雪年与少雪年土壤冻结与消融时间、土壤温湿度、地表能量分量的变化特征。结果表明:多雪年地表反照率偏高,净辐射偏低,地表感热输送偏低,土壤由热“源”转为热“汇”的时间晚于少雪年。积雪可减少土壤吸收辐射能量,减少地表感热通量,在土壤完全冻结期与消融期增大地表潜热通量,在完全冻结期,减少土壤向大气的热输送,在消融期,减少大气向土壤的热输送。积雪在冻结期有降温作用,使得多雪年土壤较早发生冻结,且同一时期土壤温度偏低;在完全冻结期有保温作用,使得土壤温度偏高;在消融期有保温(“凉”)作用,使得消融较晚,且同一时期土壤温度偏低。在整个积雪年内,多雪年浅层土壤湿度高于少雪年,积雪对浅层土壤有保湿作用。积雪使土壤开始冻结时间有所提前,开始消融的时间有所滞后,可延长该年土壤完全冻结持续天数。  相似文献   

17.
为了改进美国NCARCCM3全球模式中LSM陆面模型中的积雪方案的模拟效果,在Sun等[1]SAST积雪模型的基础上,作了部分修改后,加进CCM3模式LSM模型中.该方案根据格点区域平均积雪深度的不同,把地面雪盖划分为1到3层不等,能在积雪表层和中间层更好地描述温度的日变化和季节变化;较详细地考虑了雪的热传导、太阳辐射的穿透吸收、雪的融化、液态水的储存、渗透和再冻结等积雪内部的主要物理过程;根据Nimbus-7卫星实测雪深资料修改了积雪覆盖度和雪面反照率的计算方案.利用前苏联6个台站1978-1983年的实测积雪资料和大气强迫数据,进行了单点模拟试验,结果表明,新的积雪参数化方案能够较好地再现积雪深度和雪水当量的逐日和季节变化特征,部分提高了积雪参数化方案对积雪的模拟能力.  相似文献   

18.
新疆东部黑戈壁作为气候恶劣、人迹罕至的生态脆弱区,具有丰富的太阳能资源。利用红柳河陆气相互作用观测站2019年4、7、9月观测资料,分析东疆黑戈壁地表辐射及能量收支演变特征。结果表明:(1)地表辐射及能量收支各分量日变化均为单峰型。就不同季节而言,太阳总辐射和净辐射为夏季>春季>秋季,反射短波辐射为春季>夏季>秋季,地表和大气长波辐射为夏季>秋季>春季。(2)能量收支各分量季节变化明显,感热通量为春季>夏季>秋季,潜热通量为夏季>秋季>春季,地表土壤热通量为秋季>夏季>春季;能量分配在不同季节均以感热为主,地表土壤热通量次之,潜热通量极其微弱。(3)地表反照率日变化均为“U”型,在不同季节表现为春季>秋季>夏季,依次为0.29、0.27、0.26。东疆黑戈壁地表反照率整体较高,这是下垫面为黑色砾石所致。  相似文献   

19.
为了改进美国NCAR CCM3全球模式中LSM陆面模型中的积雪方案的模拟效果,在Sun等SAST积雪模型的基础上,作了部分修改后,加进CCM3模式LSM模型中。该方案根据格点区域平均积雪深度的不同,把地面雪盖划分为1到3层不等,能在积雪表层和中间层更好地描述温度的日变化和季节变化;较详细地考虑了雪的热传导、太阳辐射的穿透吸收、雪的融化、液态水的储存、渗透和再冻结等积雪内部的主要物理过程;根据Nimbus-7卫星实测雪深资料修改了积雪覆盖度和雪面反照率的计算方案。利用前苏联6个台站1978—1983年的实测积雪资料和大气强迫数据,进行了单点模拟试验,结果表明,新的积雪参数化方案能够较好地再现积雪深度和雪水当量的逐日和季节变化特征,部分提高了积雪参数化方案对积雪的模拟能力。  相似文献   

20.
利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(1-2月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号