首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The passive margin Texas Gulf of Mexico Coastal Plain consists of coalescing late Pleistocene to Holocene alluvial–deltaic plains constructed by a series of medium to large fluvial systems. Alluvial–deltaic plains consist of the Pleistocene Beaumont Formation, and post-Beaumont coastal plain incised valleys. A variety of mapping, outcrop, core, and geochronological data from the extrabasinal Colorado River and the basin-fringe Trinity River show that Beaumont and post-Beaumont strata consist of a series of coastal plain incised valley fills that represent 100 kyr climatic and glacio-eustatic cycles.

Valley fills contain a complex alluvial architecture. Falling stage to lowstand systems tracts consist of multiple laterally amalgamated sandy channelbelts that reflect deposition within a valley that was incised below highstand alluvial plains, and extended across a subaerially-exposed shelf. The lower boundary to falling stage and lowstand units comprises a composite valley fill unconformity that is time-transgressive in both cross- and down-valley directions. Coastal plain incised valleys began to fill with transgression and highstand, and landward translation of the shoreline: paleosols that define the top of falling stage and lowstand channelbelts were progressively onlapped and buried by heterolithic sandy channelbelt, sandy and silty crevasse channel and splay, and muddy floodbasin strata. Transgressive to highstand facies-scale architecture reflects changes through time in dominant styles of avulsion, and follows a predictable succession through different stages of valley filling. Complete valley filling promoted avulsion and the large-scale relocation of valley axes before the next sea-level fall, such that successive 100 kyr valley fills show a distributary pattern.

Basic elements within coastal plain valleys can be correlated with the record offshore, where cross-shelf valleys have been described from seismic data. Falling stage to lowstand channelbelts within coastal plain valleys were feeder systems for shelf-phase and shelf-margin deltas, respectively, and demonstrate that falling stage fluvial deposits are important valley fill components. Signatures of both upstream climate change vs. downstream sea-level controls are therefore interpreted to be present within incised valley fills. Signatures of climate change consist of the downstream continuity of major stratigraphic units and component facies, which extends from the mixed bedrock–alluvial valley of the eroding continental interior to the distal reaches, wherever that may be at the time. This continuity suggests the development of stratigraphic units and facies is strongly coupled to upstream controls on sediment supply and climate conditions within hinterland source regions. Signatures of sea-level change are critical as well: sea-level fall below the elevation of highstand depositional shoreline breaks results in channel incision and extension across the newly emergent shelf, which in turn results in partitioning of the 100 kyr coastal plain valleys. Moreover, deposits and key surfaces can be traced from continental interiors to the coastal plain, but there are downstream changes in geometric relations that correspond to the transition between the mixed bedrock–alluvial valley and the coastal plain incised valley. Channel incision and extension during sea-level fall and lowstand, with channel shortening and delta backstepping during transgression, controls the architecture of coastal plain and cross-shelf incised valley fills.  相似文献   


2.
High resolution seismic lines from the inner and mid-shelf of the Durban Bight reveal an unprecedented view of the seismic stratigraphy of the central KwaZulu-Natal uppermost continental margin. Seven units are recognised from the shelf on the basis of their stratal architecture and bounding unconformities. These comprise four incompletely preserved sequences consisting of deposits of the highstand systems tract (Unit B), falling stage systems tracts (Unit C), the transgressive systems tract (Units A, D and G) and lowstand systems tracts (early fill of the incised valleys and strike diachronous prograding reflectors of Unit A). Seismic facies recognised as incised valley fills correspond to the lowstand and transgressive systems tracts. When integrated with published accounts of onshore and offshore lithostratigraphy and local sea level curves, we recognise an Early Santonian transgression (Unit A to Unit B), superimposed by uplift-induced pulses of forced regression. A Late Campanian relative sea level fall (Unit C) followed. Sediments of the Tertiary period are not evident on the Durban Bight shelf except for isolated incised valley fills of Unit D lying within incised valleys of Late Pliocene age. Overlying these are two stages of Pleistocene shoreline deposits of indeterminate age. Erosion concurrent with relative sea level fall towards the last glacial maximum shoreline carved a third set of incised valleys within which sediments of the Late Pleistocene/Holocene have infilled.  相似文献   

3.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

4.
Quaternary incised valley systems are usually characterized by the preservation of a single valley-fill attributed to the last post-glacial period. Moreover, there are very few cases of correlation between incised valley system developed on inner shelf and sedimentary units observed on the mid to outer shelf, mainly forced regressive wedges. The Roussillon shelf, in the western part of the Gulf of Lion, is a particular example of preserved Quaternary compound incised valley system also characterized by a direct correlation with the forced regressive lowstand wedges on the mid-outer shelf. High-resolution seismic data and a borehole, 60 m deep, located on the beach barrier permit an accurate study of the geometry and lithology of the system. Six imbricated and more or less preserved incised valleys and valley-fills are observed up to the inner to mid-shelf. The key surfaces associated to the incised valleys are correlated to the boundaries of the forced regressive wedges. They are assumed to be reworked surfaces. At the borehole location, only few thin layers, less than 1 m thick, of coarse grain and/or floating pebbles, are observed and should correspond to preserved fluvial lowstand deposits reworked under marine influence. The valley fills are mainly composed of estuarine muddy silts. From AMS 14C age dating it is inferred that the uppermost incised valley system is younger than 45 ky cal BP. Based on those observations, the six preserved incised valley systems are assumed to be controlled by the last six 4th order sea-level cycles — 100 ky — of the middle to late Quaternary. The paleo-topography of the underlying Plio-Quaternary deposits controls the compound incised valley system location. The deep topography of the Messinian Erosionnal Surface is a controlling factor at a lower degree. The partial preservation of the successive valley fill is attributed not only to the differential subsidence but also to the lateral migration of each incision and to the hydrodynamic regime.  相似文献   

5.
江苏南通地区晚第四纪下切河谷沉积与环境演变   总被引:1,自引:0,他引:1  
采用层序地层学基本原理,以海平面升降旋回为主线,根据钻井岩芯、古生物、测年和分析化验等资料,探讨了江苏南通地区晚第四纪地层层序、层序界面、沉积特征及沉积环境的演变。结果表明,研究区晚第四纪发育三期下切河谷,形成了三套沉积层序,自下而上三个层序的地质时代分别相当于晚第四纪早期、晚第四纪中期和晚第四纪晚期。由于后期河流的强烈下切破坏,早期沉积层序往往被剥蚀殆尽,仅残留下部的河床相粗粒沉积,造成不同期河床相的叠置;相对而言,晚第四纪晚期形成的下切河谷沉积层序以不同的沉积相组合被保存下来,自下而上划分为河床、河漫滩、河口湾、浅海和三角洲5种沉积相类型,表现为一个较完整的沉积层序。晚第四纪晚期下切河谷底界面,是末次冰期海面下降,河流下切形成的侵蚀面,与河间地古土壤层顶面的沉积间断面同属一个地史期的产物,一起构成区域不整合面,界面上下岩性突变,其上的冰后期地层属同一个海平面变化旋回,可互相对比,因而具有年代地层学意义。三期下切河谷层序的套叠结构表明,晚第四纪以来,研究区存在三次"低海面-海侵-高海面-海退"周期性海面变化。  相似文献   

6.
《Quaternary Science Reviews》2007,26(22-24):2937-2957
We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes.This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (∼8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (∼5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (∼6400–5200 cal BP) and soil formation (∼5200–2200 cal BP). Localised renewed sedimentation (∼2200–200 cal BP) is linked to human activity.  相似文献   

7.
The Pennsylvanian Pikeville, Hyden and Four Corners formations of the Breathitt Group in eastern Kentucky, USA, contain six major facies associations along with a number of subassociations. These facies associations are offshore siltstone, rhythmically bedded mouthbar heteroliths, predominantly fine-grained floodplain deposits, minor channel fills, major distributary channels and major, stacked fluvial bodies. The stacked fluvial bodies are incised into a variety of open marine and delta plain deposits, have widths of several kilometres and exhibit a range of sandy fill types. These fluvial complexes are interpreted as incised valley fills. Parasequences and parasequence sets are not identifiable. Nonetheless, it is possible to identify systems tracts on the basis of sequential position, facies associations and systematic changes in architectural style and sediment body geometries. The studied portion of the Breathitt Group comprises stacked 4th-order sequences, which occur in lowstand, transgressive and highstand sequence sets related to the development of a lower frequency base level cycle. In the lowstand sequence set, incision associated with successive 4th-order sequence boundaries has commonly removed all the HST and TST of the underlying sequences, such that succeeding 4th-order incised valley fills are amalgamated. Within the transgressive sequence set, incision is at a minimum and incised valley fills tend to stack discretely with the maximum amount of fine-grained TST and HST between them. The highstand sequence set is transitional between the lowstand and transgressive sequence sets in terms of the amount of transgressive and highstand deposits preserved. Incised valley fills tend to stack discretely.  相似文献   

8.
渤海是一个仅通过渤海海峡与北黄海相接的半封闭陆架浅海,晚第四纪以来的地层演化过程复杂,目前尚不清楚,且海相地层的形成时代存在争议.为了研究渤海西部晚第四纪以来的地层层序,对高分辨率浅地层剖面声学地层与典型钻孔沉积地层的进行对比分析.研究表明:高分辨率浅地层剖面自下而上划定的7个声学地层单元(U5、U4-2、U4-1、U3、U2、U1-2、U1-1)与钻孔岩心划分的沉积地层单元具有良好的对应关系.与MIS4期、MIS2期低海面时期的沉积间断密切相关的两个层序界面R5、R3,将渤海西部晚第四纪(MIS5期)以来的地层层序自下而上划分为3个层序(SQ3、SQ2、SQ1):SQ3识别出下部海侵体系域与高水位体系域、上部海退体系域,分别对应MIS5期海平面相对较高时期的滨-浅海相交替沉积(U5)、MIS4期早期滨海相沉积(U4-2);SQ2自下而上由低水位体系域[MIS4期中晚期与黄河、滦河相关的河湖相沉积(U4-1)]与海侵体系域[MIS3期早中期滨海相沉积(U3)]组成;SQ1自下而上包括低水位体系域[末次冰盛期与滦河相关的河湖相沉积(U2)]、海侵体系域[全新世早中期滨海相沉积(U1-2)]高水位体系域[全新世高海面以来的浅海相沉积(U1-1)].研究区的地层发育受控于海平面变化、沉积物供应、渤海海峡地形及活动构造的共同作用.   相似文献   

9.
通过对南海西北次海盆新获得的地震资料进行综合解释和层序地层分析,揭示了海盆中的沉积对构造演化阶段的响应。始新世-早渐新世陆缘裂陷期,盆地以对称裂谷形式,发育地堑裂谷层序,沉积以近物源为特征,相变大,发育了冲积扇-扇三角洲-湖相沉积,沉积体系的配置受同沉积断裂控制明显,快速沉降和充分的物源供给决定了沉积体系的构成特征。晚渐新世海底扩张期,岩石圈破裂,陆缘进一步拉开并开始海底扩张,出现海相沉积,来自陆坡的陆架边缘三角洲越过陆坡进入海盆,在海盆内沉积了一套向海盆中部逐渐减薄的楔状地层,并伴有大量的火山碎屑沉积物。早-中新世以来热沉降期,随着构造沉降增大,相对海平面总体不断上升,进入深水盆地,形成陆架陆坡体系,大量的碎屑物质以重力流、深水底流等深水作用方式进入海盆;沉降晚期陆架-陆坡物源供应减弱,琼东南中央峡谷成为其主要的物质供应来源通道,在此期间二次海平面下降、回升的综合作用下,海盆内发育了多期以下切水道为特征的低水位域沉积体系。  相似文献   

10.
A shallow coring and geophysical logging program has recorded the sedimentary fill of the Brazos River valley in the Texas Gulf Coastal Plain. Thermoluminescence dates together with new and recalibrated published radiocarbon dates show the valley fill to include extensive, sandy, buried falling stage and lowstand Oxygen Isotope Stage (OIS) 3 and 2 deposits. These alluvial deposits are punctuated by numerous paleosoil horizons that record alternating periods of cutting, bypass and accumulation. Maximum valley incision and two periods of terrace formation preceded marine lowstand conditions, suggesting significant discordance between preserved fluvial and classical marine system tracts. The latest Pleistocene incision and fill history appears related to cycles of increased discharge and incision, followed by system equilibration and terrace formation. Analysis of the Brazos River incised valley and its contained paleochannels indicates that latest Pleistocene mean annual discharge was as much as four times greater than that of today. This magnitude of discharge in the Brazos would require a two-fold increase in precipitation across the drainage basin. Such an increase is comparable to the present day measured positive El Niño winter precipitation anomaly across the region. Paleochannel geometries and the stratigraphic and sedimentologic data from this investigation support the hypothesis that periods of high-amplitude, El Niño-like climatic perturbations characterized the late Quaternary climate of the south-central and southwestern U.S. This period of high discharge coincides, at least in part, with late OIS 3 progradation of the Brazos delta to the shelf margin, OIS 3 and 2 valley incision across the Texas shelf, and concomitant sand bypass to intraslope basins beyond the shelf edge.  相似文献   

11.
The mid-Cenomanian Dunvegan Formation represents a delta complex deposited on a foreland basin ramp over about 2 my. The Dunvegan is divided into 10 transgressive–regressive allomembers, labelled J–A in ascending order, each defined by regional marine transgressive surfaces. Parasequences within allomembers show an aggradational to offlapping stacking pattern that reflects alternate generation and removal of accommodation. The upper surfaces of allomembers H–E are incised by extensive valley systems traceable for up to 320 km and over about 50 000 km2. Valley depths range up to 41 m and can change significantly over short distances. However, the average depth of incision (mean 21 m) shows no systematic variation in longitudinal profiles and no evidence of headward shallowing. Valleys are typically 1–2 km wide, but locally widen to about 8 km. Widening is sometimes associated with confluence zones, but elsewhere it is not. Updip reaches of valleys are dominated by cross-bedded fluvial sandstone forming multistorey point-bar deposits. Sandstones contain widespread but uncommon paired carbonaceous drapes recognizable as tidal bundles. Inclined heterolithic stratification is locally well developed at the top of the valley fill. Downdip reaches of valleys, typically within 50 km of the lowstand shoreline, have a sandstone-dominated lower part and, locally, a mud-rich upper portion consisting of a variety of laminated heterolithic facies with a clear tidal signature. These heterolithic deposits may represent central basin, tidal flat, bayhead delta and point-bar environments. Valley filling took place mainly during the transgressive systems tract (TST) when tidally influenced environments migrated upvalley. Semi-diurnal tidal backwater effects extended at least 30 km landward of the regional maximum transgressive marine shoreline. The aggradational late TST and highstand systems tract (HST) includes deltaic and coastal plain deposits comprising lake and anastomosed river deposits that suggest a very low gradient (≈ 1:3000). Delta parasequences of the falling stage systems tract (FSST) offlap seaward and have no equivalent coastal plain deposits. The FSST has an average width of 60 km and an inferred gradient of 1:2500. The upper surfaces of the HST and FSST are extensively incised by valleys. The lowstand systems tract (LST) is subtly aggradational, lacks valleys and is characterized by large delta lobes fed by major distributaries. The width and inferred slope of the FSST, coupled with the thickness of aggradational TST and HST deposits on the coastal plain, suggest a vertical accommodation of about 35 m per transgressive event. About 11 m of this is attributed to isostatic subsidence resulting from water and sediment loads; the residual 24 m is attributed to eustatic rise. This sea-level change is of the same order of magnitude as the valley depths. The length of valleys, however, does not seem to be explicable solely in terms of downstream forcing by sea-level change, and an additional, upstream-forcing mechanism, possibly related to precipitation cycles in the Milankovitch band, might be inferred.  相似文献   

12.
黔南地区早、中泥盆世沉积演化的动力机制   总被引:3,自引:0,他引:3  
泥盆纪时,黔南地区为一相对稳定的台地,早泥盆世晚期,海水开始漫漫其上.初始发育陆源碎屑沉积体系,中泥盆世发育陆源碎屑~碳酸盐混合体系.空间配置有下列几种类型:滨岸障壁~泻湖~河流体系,碳酸盐缓坡~滨岸障壁~泻湖体系,镶边型碳酸盐台地~泻湖三角洲(潮坪)体系,碳酸盐缓坡~三角洲体系。基底断裂限定了台地和台间沟的延限范围和演化进程,这两种不同沉积背景的沉积演化旋回可能主要受海平面变化控制。  相似文献   

13.
The post-glacial succession in the Cobequid Bay — Salmon River incised valley contains two sequences, the upper one incomplete. The lower sequence contains only highstand system tracts (HST) deposits which accumulated under microtidal, glacio-marine deltaic conditions. The upper sequence contains two, retrogradationally stacked parasequences. The lower one accumulated in a wave-dominated estuarine environment under micro-mesotidal conditions. It belongs to the lowstand system tract (LST) or early transgressive system tract (TST) depending on the timing and location of the lowstand shoreline, and contains a gravel barrier that has been overstepped and preserved with little modification. The upper parasequence accumulated in the modern, macrotidal estuary, and is assignable to the late TST. Recent, net progradation of the fringing marshes indicates that a new HST has begun. The sequence boundary separating the two sequences was formed by fluvial incision, and perhaps also by subtidal erosion during the relative sea level fall. Additional local erosion by waves and tidal currents occurred during the transgression. The base of the macrotidal sands is a prominent tidal ravinement surface which forms the flooding surface between the backstepping estuarine parasequences. Because fluvial deposition continued throughout the transgression, the fluvial-estuarine contact is diachronous and cannot be used as the transgressive surface. The maximum flooding surface will be difficult to locate in the macrotidal sands, but is more easily identified in the fringing muddy sediments. These observations indicate that: (1) large incised valleys may contain a compound fill that consists of more than one sequence; (2) relative sea level changes determine the stratal stacking patterns, but local environmental factors control the nature of the facies and surfaces; (3) these surfaces may have complex origins, and commonly become amalgamated; (4) designation of the transgressive surface (and thus the LST) is particularly difficult as many of the prominent surfaces in the valley fill are diachronous facies boundaries; and (5) the transgression of complex topography may cause geologically instantaneous changes in tidal range, due to resonance under particular geographical configurations.  相似文献   

14.
对长江三角洲晚第四纪地层沉积特征进行了精细研究,探讨了研究区层序地层格架,在此基础上分析了浅层生物气成藏条件、特征和分布规律。研究表明,长江三角洲晚第四纪发育3期下切河谷,形成了3套沉积层序;因后期河流的强烈下切破坏,早期沉积层序往往被剥蚀殆尽,仅残留下部的河床相粗粒沉积,造成不同期河床相的叠置;相对而言,末次冰期以来形成的下切河谷沉积层序以相对完整的沉积相组合被保存下来。长江三角洲浅层天然气是未经运移的原生生物气,其主要富集于末次冰期以来的沉积层序内,气藏为自生自储同生型的岩性圈闭。河口湾—河漫滩和浅海相泥质沉积物既是气源岩,又是盖层,后者可作为良好的区域盖层;河口湾—河漫滩和河床相砂质沉积物为主要储集层。因此,研究区晚第四纪多期下切河谷沉积层序有利于浅层生物气藏的形成,特别是晚期下切河谷内河口湾—河漫滩相砂质透镜体以及河床相砂体可作为优先勘探目标。  相似文献   

15.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


16.
High-resolution seismic records obtained in the Rio Grande do Sul coastal zone, southern Brazil, revealed that prominent valleys and channels developed in the area before the installation of actual coastal plain. Landwards, the paleoincisions can be linked with the present courses of the main river dissecting the area. Oceanwards, they can be linked with related features previously recognized in the continental shelf and slope by means of seismic and morphostructural studies. Based mainly on seismic, core data and geologic reasoning, it can be inferred that the coastal valleys were incised during forced regression events into the coastal prism deposited during previous sea level highstand events of the Quaternary. Seismic data has revealed paleovalleys up to 10 km wide and, in some places, infilled with up to 40 m thick of sediments. The results indicated two distinct periods of cut-and-fill events in the Patos Lagoon area. The filling of the younger incision system is mainly Holocene and its onset is related to the last main regressive event of the Pleistocene, when the sea level fell about 130 m below the actual position. The older incision and filling event is related to the previous regressive–transgressive events of the Middle and Late Pleistocene. The fluvial discharge fed delta systems on the shelf edge during the sea level lowstands. The subsequent transgressions drowned the incised drainage, infilling it and closing the inlets formerly connecting the coastal river to the ocean. The incised features may have played a significant role on the basin-margin architecture, facies distribution and accommodation space during the multitude of up and down sea level events of the Quaternary.  相似文献   

17.
Sedimentary changes during the last ∼2500 years have been reconstructed from cored sedimentary records from the deltaic floodplain of the Lower Tagus Valley and the Tagus mudbelt on the continental shelf offshore Lisbon. We used a multi-proxy approach consisting of sedimentology, grainsize, pollen data and magnetic susceptibility. In the floodplain grainsize coarsened and sedimentation rate and magnetic susceptibility increased during the late Holocene due to an increased flooding frequency and/or intensity. On the Tagus shelf the mudbelt grainsize fined, together with a higher sedimentation rate and increased magnetic susceptibility. The fining grainsize is explained by an increased suspended sediment flux towards the shelf and subdued winnowing. Floodplain and shelf records were correlated by radiocarbon dating and changes in sediment characteristics. We identified four depositional phases (∼2300/∼1600/∼1100/∼670 cal BP) on the floodplain and the shelf. These are tentatively explained by land-use changes in the Tagus catchment.  相似文献   

18.
为了揭示鄂尔多斯盆地东缘层序地层与沉积相特征,以层序地层学和沉积学理论为指导,对鄂尔多斯盆地东缘保德扒楼沟剖面及周缘上古生界的层序与体系域界面类型、层序结构、沉积相类型及沉积演化进行研究。依据区域性不整合面、下切谷冲刷面、海侵方向转换面和区域性海退面等层序界面将研究区上古生界划分为7个三级层序,分别对应于本溪组、太原组2段、太原组1段、山西组、下石盒子组、上石盒子组和石千峰组。保德扒楼沟及周缘上古生界剖面发育16种岩石类型和8种岩石组合。区内上古生界发育障壁海岸相、碳酸盐岩台地相、辫状河相和曲流河相。SQ1-SQ3中低位体系域发育风化壳和潮道亚相,海侵体系域发育潮坪亚相和潟湖亚相,高位体系域发育碳酸盐岩台地相、潟湖亚相和潮坪亚相;SQ4-SQ7中低位体系域发育辫状河河床亚相,海侵体系域主要发育曲流河泛滥平原亚相,高位体系域主要发育多期曲流河河床亚相—堤岸亚相—泛滥平原亚相的演化序列。区内上古生界经历了由障壁海岸相和碳酸盐岩台地相向河流相的演化过程,沉积演化主要受物源供给、海平面变化和构造活动的控制。  相似文献   

19.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

20.
Detailed sedimentological facies analysis of the fluvio-deltaic Millstone Grit succession (Upper Carboniferous) of South Wales reveals that a number of cyclothems bounded by marine flooding surfaces (marine bands) in these strata exhibit facies architectures that represent erosion, non-deposition and/or deposition during periods of falling relative sea-level. A major fluvial complex below the Subcrenatum Marine Band, the Farewell Rock, lies within an incised valley, with a regional unconformity (sequence boundary) at its base. This unconformity is marked by deep erosional relief, an identifiable time gap and an angular discordance in bedding. The Cumbriense Quartzite, a correlative unit containing several mature palaeosols, records a depositional hiatus on a terrace-like interfluve that lay beyond the margins of the coeval Farewell Rock valley. Cyclothems in the underlying Middle Shales contain additional surfaces and units of subtler character. Beneath the Cancellatum Marine Band, a thin (15 cm), calcareous siltstone bed (the ‘Amroth Granule Bed’) that directly overlies prodelta shales contains reworked bioclasts, bored phosphorite clasts and quartz granules. Quartz granules in this bed are interpreted to represent relict lowstand, fluviatile? deposits, which were reworked during later transgression. Three further cyclothems contain sharp-based, storm-reworked mouth bars that record an abrupt lowering of wave base, most probably during periods of falling relative sea-level. One of these cyclothems also contains a distributary channel complex, which records an abrupt influx of coarse-grained sediment of ambiguous origin. The significance of these subtle surfaces and units for intracyclothem stratigraphy has rarely been considered; their prevalence in the Middle Shales provides evidence for numerous, high-frequency relative sea-level falls, which were previously unrecognized. These relative sea-level falls appear to alternate coherently with the widespread sea-level rises recorded by the marine bands, suggesting that glacio-eustasy is their most likely driving mechanism. The notion of glacio-eustatic sea-level falls is supported by the correlation of the basal Farewell Rock sequence boundary with sequence boundaries documented in adjacent basins. The angular unconformity and a change in sediment provenance at the base of the Farewell Rock, however, suggest an additional tectonic control on stratigraphic architecture here, namely a short-lived phase of rifting or inversion prior to widespread fluvial incision. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号