首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.  相似文献   

2.
We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. The two CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of \(100~R_{\odot}\) from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with minimum \(\mathrm{D}_{\mathrm{st}}\) index of approximately ?86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (\({\approx\,}150\) nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.  相似文献   

3.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

4.
We present a review of the different aspects associated with the interaction of successive coronal mass ejections (CMEs) in the corona and inner heliosphere, focusing on the initiation of series of CMEs, their interaction in the heliosphere, the particle acceleration associated with successive CMEs, and the effect of compound events on Earth’s magnetosphere. The two main mechanisms resulting in the eruption of series of CMEs are sympathetic eruptions, when one eruption triggers another, and homologous eruptions, when a series of similar eruptions originates from one active region. CME?–?CME interaction may also be associated with two unrelated eruptions. The interaction of successive CMEs has been observed remotely in coronagraphs (with the Large Angle and Spectrometric Coronagraph Experiment – LASCO – since the early 2000s) and heliospheric imagers (since the late 2000s), and inferred from in situ measurements, starting with early measurements in the 1970s. The interaction of two or more CMEs is associated with complex phenomena, including magnetic reconnection, momentum exchange, the propagation of a fast magnetosonic shock through a magnetic ejecta, and changes in the CME expansion. The presence of a preceding CME a few hours before a fast eruption has been found to be connected with higher fluxes of solar energetic particles (SEPs), while CME?–?CME interaction occurring in the corona is often associated with unusual radio bursts, indicating electron acceleration. Higher suprathermal population, enhanced turbulence and wave activity, stronger shocks, and shock?–?shock or shock?–?CME interaction have been proposed as potential physical mechanisms to explain the observed associated SEP events. When measured in situ, CME?–?CME interaction may be associated with relatively well organized multiple-magnetic cloud events, instances of shocks propagating through a previous magnetic ejecta or more complex ejecta, when the characteristics of the individual eruptions cannot be easily distinguished. CME?–?CME interaction is associated with some of the most intense recorded geomagnetic storms. The compression of a CME by another and the propagation of a shock inside a magnetic ejecta can lead to extreme values of the southward magnetic field component, sometimes associated with high values of the dynamic pressure. This can result in intense geomagnetic storms, but can also trigger substorms and large earthward motions of the magnetopause, potentially associated with changes in the outer radiation belts. Future in situ measurements in the inner heliosphere by Solar Probe+ and Solar Orbiter may shed light on the evolution of CMEs as they interact, by providing opportunities for conjunction and evolutionary studies.  相似文献   

5.
We perform a statistical analysis on 157 M-class soft X-ray flares observed during 1997?–?2014 with and without deca-hectometric (DH) type II radio bursts aiming at the reasons for the non-occurrence of DH type II bursts in certain events. All the selected events are associated with halo Coronal Mass Ejections (CMEs) detected by the Solar and Heliospheric Observatory (SOHO) / Large Angle Spectrometric and COronograph (LASCO). Out of 157 events, 96 (61%; “Group I”) events are associated with a DH type II burst observed by the Radio and Plasma Wave (WAVES) experiment onboard the Wind spacecraft and 61 (39%; “Group II”) events occur without a DH type II burst. The mean CME speed of Group I is \(1022~\mbox{km}/\mbox{s}\) and that of Group II is \(647~\mbox{km}/\mbox{s}\). It is also found that the properties of the selected M-class flares such as flare intensity, rise time, duration and decay time are greater for the DH associated flares than the non-DH flares. Group I has a slightly larger number (56%) of western events than eastern events (44%), whereas Group II has a larger number of eastern events (62%) than western events (38%). We also compare this analysis with the previous study by Lawrance, Shanmugaraju, and Vr?nak (Solar Phys. 290, 3365L, 2015) concerning X-class flares and confirm that high-intensity flares (X-class and M-class) have the same trend in the CME and flare properties. Additionally we consider aspects like acceleration and the possibility of CME-streamer interaction. The average deceleration of CMEs with DH type II bursts is weaker (\(a = - 4.39\mbox{ m}/\mbox{s}^{2}\)) than that of CMEs without a type II burst (\(a = -12.21\mbox{ m}/\mbox{s}^{2}\)). We analyze the CME-streamer interactions for Group I events using the model proposed by Mancuso and Raymond (Astron. Astrophys. 413, 363, 2004) and find that the interaction regions are the most probable source regions for DH type II radio bursts.  相似文献   

6.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.  相似文献   

7.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

8.
We propose a new model for the magnetic field at different distances from the Sun during different phases of the solar cycle. The model depends on the observed large-scale non-polar (\({\pm}\, 55^{\circ }\)) photospheric magnetic field and on the magnetic field measured at polar regions from \(55^{\circ }\) N to \(90^{\circ }\) N and from \(55^{\circ }\) S to \(90^{\circ }\) S, which are the visible manifestations of cyclic changes in the toroidal and poloidal components of the global magnetic field of the Sun. The modeled magnetic field is determined as the superposition of the non-polar and polar photospheric magnetic field and considers cycle variations. The agreement between the model predictions and magnetic fields derived from direct in situ measurements at different distances from the Sun, obtained with different methods and at different solar activity phases, is quite satisfactory. From a comparison of the magnetic fields as observed and calculated from the model at 1 AU, we conclude that the model magnetic field variations adequately explain the main features of the interplanetary magnetic field (IMF) radial, \(B_{\mathrm{x}}\), component cycle evolution at Earth’s orbit. The modeled magnetic field averaged over a Carrington rotation (CR) correlates with the IMF \(B_{\mathrm{x}}\) component also averaged over a CR at Earth’s orbit with a coefficient of 0.691, while for seven CR-averaged data, the correlation reaches 0.81. The radial profiles of the modeled magnetic field are compared with those of already existing models. In contrast to existing models, ours provides realistic magnetic-field radial distributions over a wide range of heliospheric distances at different cycle phases, taking into account the cycle variations of the solar toroidal and poloidal magnetic fields. The model is a good approximation of the cycle behavior of the magnetic field in the heliosphere. In addition, the decrease in the non-polar and polar photospheric magnetic fields is shown. Furthermore, the magnetic field during solar cycle maxima and minima decreased from Cycle 21 to Cycle 24. This implies that both the toroidal and poloidal components, and therefore the solar global magnetic field, decreased from Cycle 21 to Cycle 24.  相似文献   

9.
Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.  相似文献   

10.
Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth’s magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad–Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular–cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take into consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes.  相似文献   

11.
Between 13 and 16 February 2011, a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we employ the graduated cylindrical shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the model called Forecasting a CME’s Altered Trajectory (ForeCAT) for nonradial CME dynamics driven by magnetic forces to simulate the deflection and rotation of the seven CMEs. We find good agreement between ForeCAT results and reconstructed CME positions and orientations. The CME deflections range in magnitude between \(10^{\circ }\) and \(30^{\circ}\). All CMEs are deflected to the north, but we find variations in the direction of the longitudinal deflection. The rotations range between \(5^{\circ}\) and \(50^{\circ}\) with both clockwise and counterclockwise rotations. Three of the CMEs begin with initial positions within \(2^{\circ}\) from one another. These three CMEs are all deflected primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, differ by \(20^{\circ}\) and \(30^{\circ}\), respectively. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as from the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, although the active region faced toward Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed Earth.  相似文献   

12.
Based on energetic particle observations made at \({\approx}\,1\) AU, we present a catalogue of 46 wide-longitude (\({>}\,45^{\circ}\)) solar energetic particle (SEP) events detected at multiple locations during 2009?–?2016. The particle kinetic energies of interest were chosen as \({>}\,55\) MeV for protons and 0.18?–?0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons \({\approx}\,44^{\circ}\), electrons \({\approx}\,50^{\circ}\)), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer’s connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed distributions of the CMEs related to wide events and the CMEs related to all near-Earth SEP events of similar energy range from the same time period.  相似文献   

13.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

14.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

15.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

16.
In this work a total of 266 interplanetary coronal mass ejections observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SOHO/LASCO) and then studied by in situ observations from Advanced Composition Explorer (ACE) spacecraft, are presented in a new catalog for the time interval 1996?–?2009 covering Solar Cycle 23. Specifically, we determine the characteristics of the CME which is responsible for the upcoming ICME and the associated solar flare, the initial/background solar wind plasma and magnetic field conditions before the arrival of the CME, the conditions in the sheath of the ICME, the main part of the ICME, the geomagnetic conditions of the ICME’s impact at Earth and finally we remark on the visual examination for each event. Interesting results revealed from this study include the high correlation coefficient values of the magnetic field \(B_{z}\) component against the Ap index (\(r = 0.84\)), as well as against the Dst index (\(r = 0.80\)) and of the effective acceleration against the CME linear speed (\(r = 0.98\)). We also identify a north–south asymmetry for X-class solar flares and an east–west asymmetry for CMEs associated with strong solar flares (magnitude ≥ M1.0) which finally triggered intense geomagnetic storms (with \(\mathrm{Ap} \geq179\)). The majority of the geomagnetic storms are determined to be due to the ICME main part and not to the extreme conditions which dominate inside the sheath. For the intense geomagnetic storms the maximum value of the Ap index is observed almost 4 hours before the minimum Dst index. The amount of information makes this new catalog the most comprehensive ICME catalog for Solar Cycle 23.  相似文献   

17.
Coronal mass ejections (CMEs) are considered as one of the driving sources of space weather. They are usually associated with many physical phenomena, e.g. flares, coronal dimmings, and sigmoids. To detect these phenomena, traditional supervised-learning methods assumed that at most one event occurred in a CME; therefore each CME instance is associated with a single label and the phenomenon is processed in isolation. This simplifying assumption does not fit well, as CMEs might have multiple events simultaneously. We propose to detect multiple CME-associated events by multi-label learning methods. With the data available from the Atmospheric Imaging Assembly (AIA) and the Large Angle and Spectrometric Coronagraph (LASCO), texture features representing the events are extracted from all of the associated and not-associated CMEs and converted into feature vectors for multi-label learning use. Then a function is learned to predict the proper label sets for CMEs, such that eight events, i.e. coronal dimming, coronal hole, coronal jet, coronal wave, filament, filament eruption, flare, and sigmoid, are detected explicitly. To test the proposed detection algorithm, we adopt the four-fold cross-validation strategy on a set of 551 labeled CMEs from AIA. Experimental results demonstrate the good performance of the multi-label classification methods in terms of test error.  相似文献   

18.
The Heliospheric Imagers (HI) on the Solar TErrestrial RElations Observatory (STEREO) observe the solar wind and disturbances therein as it propagates from close to the Sun to 1 AU and beyond. In this article we use stellar photometry over much of the mission to date to make a determination of the long-term evolution of the photometric response of the inner (HI-1) cameras. We find very slow degradation rates of the order of 0.1 % per year, similar to those found for HI-2 by Tappin, Eyles and Davies (Solar Phys. 290, 2143, 2015) and significantly slower than rates found for other comparable instruments. We also find that it is necessary to make a small (\({\approx}\,1~\%\)) revision to the photometric calibration parameters used to convert instrument units into physical units. Finally, we briefly discuss the effects of pointing instabilities on the measurement of stellar count rates.  相似文献   

19.
The Sun is an effective particle accelerator that produces solar energetic particle (SEP) events, during which particles of up to several GeVs can be observed. These events, when they are observed at Earth with the neutron monitor network, are called ground-level enhancements (GLEs). Although these events with their high-energy component have been investigated for several decades, a clear relation between the spectral shape of the SEPs outside the Earth’s magnetosphere and the increase in neutron monitor count rate has yet to be established. Hence, an analysis of these events is of interest for the space weather and for the solar event community.In this article, SEP events with protons accelerated to above 500 MeV were identified using data obtained with the Electron Proton Helium Instrument (EPHIN) onboard the Solar and Heliospheric Observatory (SOHO) between 1995 and 2015. For a statistical analysis, onset times were determined for the events and the proton energy spectra were derived and fitted with a power law.As a result, we present a list of 42 SEP events with protons accelerated to above 500 MeV measured with the EPHIN instrument onboard SOHO. The statistical analysis based on the fitted spectral slopes and absolute intensities is discussed, with special emphasis on whether an event has been observed as a GLE. Furthermore, we are able to determine that the derived intensity at 500 MeV and the observed increase in neutron monitor count rate are correlated for a subset of events.  相似文献   

20.
We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4?–?7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2?–?4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号