首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct injection of CO(2) into the deep ocean is receiving increasing attention as a way to mitigate increasing atmospheric CO(2) concentration. To assess the potential impact of the environmental change associated with CO(2) sequestration in the ocean, we studied the lethal and sub-lethal effects of raised CO(2) concentration in seawater on adult and early stage embryos of marine planktonic copepods. We found that the reproduction rate and larval development of copepods are very sensitive to increased CO(2) concentration. The hatching rate tended to decrease, and nauplius mortality rate to increase, with increased CO(2) concentration. These results suggest that the marine copepod community will be negatively affected by the disposal of CO(2). This could decrease on the carbon export flux to the deep ocean and change the biological pump. Clearly, further studies are needed to determine whether ocean CO(2) injection is an acceptable strategy to reduce anthropogenic CO(2).  相似文献   

2.
A marine secondary producer respires and feeds more in a high CO2 ocean   总被引:1,自引:0,他引:1  
Climate change mediates marine chemical and physical environments and therefore influences marine organisms. While increasing atmospheric CO(2) level and associated ocean acidification has been predicted to stimulate marine primary productivity and may affect community structure, the processes that impact food chain and biological CO(2) pump are less documented. We hypothesized that copepods, as the secondary marine producer, may respond to future changes in seawater carbonate chemistry associated with ocean acidification due to increasing atmospheric CO(2) concentration. Here, we show that the copepod, Centropages tenuiremis, was able to perceive the chemical changes in seawater induced under elevated CO(2) concentration (>1700 μatm, pH<7.60) with avoidance strategy. The copepod's respiration increased at the elevated CO(2) (1000 μatm), associated acidity (pH 7.83) and its feeding rates also increased correspondingly, except for the initial acclimating period, when it fed less. Our results imply that marine secondary producers increase their respiration and feeding rate in response to ocean acidification to balance the energy cost against increased acidity and CO(2) concentration.  相似文献   

3.
Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle.  相似文献   

4.
The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing.  相似文献   

5.
The spatial distribution and movement of the sewage plume from McMurdo Station, Antarctica, was investigated in the ocean under the early summer ice. Samples of seawater were obtained via holes drilled through the ice and analysed for coliform bacteria. Ocean currents were also examined to determine their effect on the movement of the plume. High densities of coliform bacteria were found along the ca. 1 km shoreline of McMurdo Station and the plume extended 200–300 m seaward. The relocation of the outfall from a surface configuration to the subsurface (11 m deep) had little influence on the distribution of the plume that sometimes reached the seawater intake station, 400 m to the south. Ocean current measurements in the study area confirmed that, while the prevailing advection was to the north and away from the intake area, episodic reversals of flow at some current meter stations coincided with pulses of sewage that moved into the intake. These findings support the use of bacterial indicators as one means to map the distribution and movement of recent sewage contamination in cold (−1.8°C) seawater and provides evidence that the disposal and movement of domestic wastes in coastal polar environments deserves attention.  相似文献   

6.
To compare the acute toxicity of CO(2)- and HCl-acidified seawater, eggs and larvae of a marine fish, Pagrus major, were exposed to seawater equilibrated with CO(2)-enriched gas mixtures (CO(2)=5% or 10%, O(2)=20.95% balanced with N(2)) or seawater acidified with 1 N HCl at two pH levels (pH 6.2 (=5% CO(2)) and 5.9 (=10% CO(2))) for 6 h (eggs) or 24 h (larvae). Mortalities of eggs were 85.8% (CO(2)) and 3.6% (HCl) at pH 6.2, and 97.4% (CO(2)) and 0.9% (HCl) at pH 5.9, while those of larvae were 61.2% (CO(2)) and 1.6% (HCl) at pH 6.2, and 100% (CO(2)) and 5.0% (HCl) at pH 5.9. Thus, previous research on the effects of acidified seawater on marine organisms, as a substitute for CO(2), has largely underestimated the toxic effects of CO(2).  相似文献   

7.
The iodine content of marine suspended matter obtained from thirteen stations in the Atlantic between 75°N and 55°S has been measured. The concentration of particulate iodine is high in the surface, up to 127 ng/kg of seawater being observed. Below the euphotic zone, it drops sharply to 1–2 ng/kg. The iodine-containing particles are probably biogenic. A simple box-model calculation shows that only 3% of the particulate iodine produced in the surface water may reach the deep sea and that the residence time of these particles in the surface water is about 0.1 year.  相似文献   

8.
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.  相似文献   

9.
Apparent oxygen utilisation is potentially biased by abiotic, physical processes. Using a coupled 3-D circulation-oxygen model, this potential is quantitatively estimated for a region in the eastern subtropical North Atlantic, called the Beta Triangle, where an inconsistency exists between observational estimates of high carbon export from the euphotic zone, based on oxygen utilisation rates in the thermocline (Jenkins 1982), and those of low nutrient supply to the euphotic zone (Lewis et al. 1986, 2004). Our results indicate that in the upper ocean, the Jenkins (1982) estimate is indeed biased high by approximately 10% due to abiotic processes feigning respiration, thus contributing to the apparent inconsistency. Vertical integration, however, yields an abiotic fraction of less than 3%, so the apparent observational discrepancy can not be resolved.Responsible Editor: Franciscus Colijn  相似文献   

10.
Relative risk assessment of cruise ships biosolids disposal alternatives   总被引:1,自引:0,他引:1  
A relative risk assessment of biosolids disposal alternatives for cruise ships is presented in this paper. The area of study encompasses islands and marine waters of the Caribbean Sea. The objective was to evaluate relative human health and ecological risks of (a) dewatering/incineration, (b) landing the solids for disposal, considering that in some countries land-disposed solids might be discharged in the near-shore environment untreated, and (c) deep ocean disposal. Input to the Bayesian assessment consisted of professional judgment based on available literature and modeling information, data on constituent concentrations in cruise ship biosolids, and simulations of constituent concentrations in Caribbean waters assuming ocean disposal. Results indicate that human health and ecological risks associated with land disposal and shallow ocean disposal are higher than those of the deep ocean disposal and incineration. For incineration, predicted ecological impacts were lower relative to deep ocean disposal before considering potential impacts of carbon emissions.  相似文献   

11.
A two-fluid, small scale numerical ocean model was developed to simulate plume dynamics and increases in water acidity due to leakages of CO2 from potential sub-seabed reservoirs erupting, or pipeline breaching into the North Sea. The location of a leak of such magnitude is unpredictable; therefore, multiple scenarios are modelled with the physiochemical impact measured in terms of the movement and dissolution of the leaked CO2. A correlation for the drag coefficient of bubbles/droplets free rising in seawater is presented and a sub-model to predict the initial bubble/droplet size forming on the seafloor is proposed. With the case studies investigated, the leaked bubbles/droplets fully dissolve before reaching the water surface, where the solution will be dispersed into the larger scale ocean waters. The tools developed can be extended to various locations to model the sudden eruption, which is vital in determining the fate of the CO2 within the local waters.  相似文献   

12.
Echinoderms play crucial roles in the structure of marine macrobenthic communities. They are sensitive to excess absorption of CO2 by the ocean, which induces ocean acidification and ocean warming. In the shelf seas of China, the mean sea surface temperature has a faster warming rate compared with the mean rate of the global ocean, and the apparent decrease in pH is due not only to the increased CO2 absorption in seawater, but also eutrophication. However, little is known about the associated changes in the diversity of echinoderms and their roles in macrobenthic communities in the seas of China. In this study, we conducted a meta-analysis of 77 case studies in 51 papers to examine the changes in the contribution of echinoderm species richness to the macrobenthos in the shelf seas of China since the 1980s. The relative species richness (RSR) was considered as the metric to evaluate these changes. Trends analysis revealed significant declines in RSR in the shelf seas of China, the Yellow Sea, and the East China Sea from 1997 to 2009. Compared with the RSR before 1997, no significant changes in mean RSR were found after 1997, except in the Bohai Sea. In addition, relative change in the RSR of echinoderms and species richness of macrobenthos led to more changes (decrease or increase) in their respective biomasses. Our results imply that changes in species richness may alter the macrobenthic productivity of the marine benthic ecosystem.  相似文献   

13.
Profiles of 210Pb over the Endeavour and North Cleft Segments of the Juan de Fuca Ridge are used to model a time scale for the scavenging, by hydrothermal plumes, of reactive elements in seawater. The hydrothermal plumes above these ridge segments are sites of intense scavenging removal of 210Pb. At Endeavour, the total 210Pb activities within the plume are as low as 8 dpm/100 l and dissolved activities are as low as 3 dpm/100 l. At the North Cleft, which is characterized by higher particulate Fe concentrations, the total 210Pb activities are 4.5 dpm/100 l, the dissolved activities are 1–2 dpm/100 l and the 210Pb activities are deficient with respect to the activity of the 210Po daughter. These are perhaps the lowest 210Pb activities ever measured in the deep sea. The large gradient of 210Pb between the plume and surrounding deep water suggests that scavenging is focused into the plumes through horizontal transport. The implication, therefore, is that this process might impact the ocean on a scale larger than that local to the ridge crest. By coupling published measurements of particle flux from Endeavour with 210Pb activities on particles trapped at that site, the total volume of seawater stripped of 210Pb per year for that site was calculated to be 7.4 × 1012 l/y. Globally, the extrapolated volume flux of seawater stripped of reactive constituents is 5.7 × 1015 l/y, such that the entire ocean is processed in this manner in 2.4×105 y. The geochemical cycle of elements with ocean residence times much shorter than this (e.g., Pb and Th) will not be greatly affected by hydrothermal scavenging. On the other hand, this process holds significance for the geochemistry of other elements scavenged by hydrothermal plumes, such as P and V, whose ocean residence times are > 104 y.  相似文献   

14.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   

15.
Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in seawater carbonate chemistry that is well suited to studies of the effects of long-term increases in CO2 levels. This shoreline lacks toxic compounds (such as H2S) and has a gradient in carbonate saturation states.  相似文献   

16.
Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this paper, the potential causes of fishery resource exhaustion in the East China Sea are analyzed, including the change in the stoichiometric composition of seawater with regard to the concentrations of N and P, toxic effects of marine pollution, marine habitat destruction, increased seawater temperatures caused by climate warming, ocean acidification, pressure from overfishing, and the spread of marine pathogenic bacteria. It is believed that the factors mentioned above have significant impact on the exhaustion of fishery resources in the East China Sea. However, considering the cumulative, synergistic, and superimposed effects as well as the amplification effects resulting from their interactions, the actual risk of ecological extinction of marine organisms might be even more severe than that previously estimated. Hence, ecosystem management and research focused on a single risk factor or influencing factor is not enough to prevent marine ecosystem degradation and fishery resource exhaustion. A comprehensive, systematic, effective, and ecosystem-based management policy is imperative for healthy and sustainable fishery development in the East China Sea.  相似文献   

17.
The purple-tipped sea urchin, Psammechinus miliaris, was exposed to artificially acidified seawater treatments (pH(w) 6.16, 6.63 or 7.44) over a period of 8 days. Urchin mortality of 100% was observed at pH(w) 6.16 after 7 days and coincided with a pronounced hypercapnia in the coelomic fluid producing an irrecoverable acidosis. Coelomic fluid acid-base measures showed that an accumulation of CO(2) and a significant reduction in pH occurred in all treatments compared with controls. Bicarbonate buffering was employed in each case, reducing the resultant acidosis, but compensation was incomplete even under moderate environmental hypercapnia. Significant test dissolution was inferred from observable increases in the Mg(2+) concentration of the coelomic fluid under all pH treatments. We show that a chronic reduction of surface water pH to below 7.5 would be severely detrimental to the acid-base balance of this predominantly intertidal species; despite its ability to tolerate fluctuations in pCO(2) and pH in the rock pool environment. The absence of respiratory pigment (or any substantial protein in the coelomic fluid), a poor capacity for ionic regulation and dependency on a magnesium calcite test, make echinoids particularly vulnerable to anthropogenic acidification. Geological sequestration leaks may result in dramatic localised pH reductions, e.g. pH 5.8. P. miliaris is intolerant of pH 6.16 seawater and significant mortality is seen at pH 6.63.  相似文献   

18.
CO(2) ocean storage by which liquefied CO(2) is injected into the deep-sea to mitigate the climate change would increase the CO(2) concentrations of the surrounding seawater. The biological impacts of such dynamic CO(2) environments are, however, unknown. We examined the acute toxicity of temporally changing seawater CO(2) concentrations on juveniles of Sillago japonica. Step-wise increases in ambient CO(2) to fCO(2) (fractional CO(2) concentration of the gas mixture bubbled into seawater) levels of 7% and 9% resulted in mortalities of 0.15 and 0.40-0.67 after 18 h, respectively. In contrast, one-step increases to these CO(2) levels killed all fish within 15 min. Further, a sudden drop of fCO(2) from 9-10% CO(2) to normocapnia (0.038%) killed all the surviving fish within a few minutes. These results demonstrate that impacts of ocean CO(2) storage need to be examined under conditions mimicking the dynamic changes in CO(2) levels expected to occur by the CO(2) injection procedure.  相似文献   

19.
The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.  相似文献   

20.
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell’s equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号