首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
飞机空中积冰的气象条件分析及数值预报试验   总被引:8,自引:0,他引:8  
迟竹萍 《气象科技》2007,35(5):714-718
利用2000年3月至2005年6月山东飞机增雨作业季节,90架次飞机宏观观测资料,对飞机积冰的气象条件和积冰特征进行了分析;并利用PSU/NCAR MM5非静力数值模式,对2005年5月16日增雨作业过程进行了个例研究,在模式准确地预测出了降水的发展趋势和降水范围的基础上,用模式预报场计算的积冰指数和实际飞行观测资料进行了对比试验。结果表明,地面倒槽和冷锋,是山东飞机增雨作业季节的主要作业天气;低压倒槽出现轻度及中度以上积冰所占的比率最大,但南方气旋出现积冰的概率最高,达53.3%;MM5模式预报场计算的积冰指数和垂直上升运动场的叠加,能较好地反映最可能发生积冰的区域、时间及积冰强度,可作为确定飞机增雨作业安全飞行航线的依据。  相似文献   

2.
The requirements for a credible large-eddy simulation of neutral, turbulent flow over hills with an aerodynamically rough surface are discussed, in order to select a suitable case for simulation. As well as providing adequate resolution within the dynamically important inner region, obtaining a realistic upstream or undisturbed mean velocity profile is also of critical importance. A distributed drag canopy formulation has been introduced to the model to allow it to obtain such a profile while resolving very close to the rough surface. Simulations have then been performed of flow over ridges of varying heights. The results from the steepest case, which is just on the verge of separation, are compared with wind-tunnel observations. It is shown that the large-eddy simulation results are in much better agreement with the experimental data than are the results from a simple first-order mixing-length closure model. An encouraging lack of sensitivity of the simulation results to numerical resolution is also demonstrated.  相似文献   

3.
The Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de Dôme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations.  相似文献   

4.
Squall lines and supercells cause severe weather and huge damages in the territory of Croatia and Hungary. These long living events can be recognised by radar very well, but the problem of early warning, especially successful numerical forecast of these phenomena, has not yet been solved in this region. Two case studies are presented here in which dynamical modelling approach gives promising results: a squall line preceding a cold front and a single supercell generated because of a prefrontal instability. The numerical simulation is performed using the PSU/NCAR meso-scale model MM5, with horizontal resolution of 3 km. Lateral boundary conditions are taken from the ECMWF model. The moist processes are resolved by Reisner mixed-phase explicit moisture scheme and for the radiation scheme a rapid radiative transfer model is applied. The analysis nudging technique is applied for the first two hours of the model run. The results of the simulation are very promising. The MM5 model reconstructed the appearance of the convective phenomena and showed the development of thunderstorm into the supercell phase. The model results give very detailed insight into wind changes showing the rotation of supercells, clearly distinguish warm core of the cell and give rather good precipitation estimate. The successful simulation of convective phenomena by a high-resolution MM5 model showed that even smaller scale conditions are contained in synoptic scale patterns, represented in this case by the ECMWF model.  相似文献   

5.
A NUMERICAL STUDY OF TROPICAL DEEP CONVECTION USING WRF MODEL   总被引:1,自引:0,他引:1  
The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,northern Australia,and to investigate the sensitivity of model results to model configuration and parameterization schemes of microphysical processes.The simulation results were compared with available measurements.The results show that the model can reproduce most of the important characteristics of the observed diurnal evolution of the convection,including the initiation of convection along the sea-breeze front,which is then reinforced by downdraft outflows,merging of cells and the formation of a deep convective system.However,further improvement is needed to simulate more accurately the location and the time for initiation of the deep convective system.Sensitivity tests show that double-nesting schemes are more accurate than the non-nesting schemes in predicting the distribution and intensity of precipitation as far as this particular case is concerned.Additionally,microphysical schemes also have an effect on the simulated amount of precipitation.It is shown that the best agreement is reached between the simulation results and observations when the Purdue Lin scheme is used.  相似文献   

6.

The airborne measurement platform MASC-3 (Multi-Purpose Airborne Sensor Carrier) is used for measurements over a forested escarpment in the Swabian Alps to evaluate the wind field. Data from flight legs between 20 and 200 m above the ground on two consecutive days with uphill (westerly) flow in September 2018 are analyzed. In the lowest 140 m above the ground a speed-up is found with increased turbulence and changes in wind direction directly over the escarpment, whereas in the lowest 20 to 50 m above the ground a deceleration of the flow is measured. Additionally, simulation results from a numerical model chain based on the Weather Research and Forecasting (WRF) model and an OpenFOAM (Open Source Field Operation and Manipulation) model, developed for complex terrain, are compared to the data captured by MASC-3. The models and measurements compare well for the mean wind speed and inclination angle.

  相似文献   

7.
多层城市冠层模式的建立及数值试验研究   总被引:4,自引:1,他引:3  
王咏薇  蒋维楣 《气象学报》2009,67(6):1013-1024
为在城市气象数值模拟中更好地体现由城市发展引起的下垫面土地利用改变及人为活动对大气过程的影响,建立了基于建筑物三维分布的多层城市冠层模式,冠层内动力方程组考虑了建筑物冠层拖曳力的作用及雷诺应力的影响,通过引入建筑物宽度、间距以及垂直分布密度指数等建筑物形态特征参数,以更好地体现城市复杂地表对大气温度、湿度及动量方程的影响.同时,该模式分屋顶、4个侧壤及地面分别考虑辐射及能量平衡求解表面温度,计算各表面与大气的通量交换,并考虑辐射阴影效应、冠层内部各个面之间的可视因子、以及与冠层内建筑物密度指数、可视因子等相关的多重反射辐射导致的辐射截陷作用.模式的离线检验结果表明:(1)冠层模式计算风廓线与风洞实验测量数据吻合良好;(2)离线冠层模式能够模拟实际小区的风速、温度垂直廓线,并能够较好地体现小区内气温日变化.冠层模式与区域边界层模式耦合检验结果表明:(1)耦合模拟的近地面(2 m处)气温及地表温度的结果明显优于传统的水泥平板方案,尤其是在夜间,水泥平板方案与实测气温最大偏差4 K左右,耦合模拟方案为1-2 K;(2)耦合模拟方案考虑了建筑物对冠层之上的拖曳力影响以及建筑物形态结构对雷诺应力的影响,风速(10 m处)计算结果与观测值相差约在1 m/s,水泥平板方案偏差3 m/s左右.  相似文献   

8.
The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.  相似文献   

9.
Summary The regional atmospheric model REMO is used to study the energy and water exchange between surface and atmosphere over the Baltic Sea and its catchment area. As a prerequisite for such studies, the model has to be validated. A major part of such a validation is the comparison of simulation results with observational data. In this study the DX product of the International Cloud Climatology Project (ISCCP) and precipitation measurements from 7775 rain gauge stations within the model domain are used for comparisons with the simulated cloud cover and precipitation fields, respectively. The observations are available in this high spatiotemporal resolution for June 1993. To quantify the comparisons of means, variability, and patterns of the data fields simple statistics are used and the significance of the results is determined with resampling methods (Pool Permutation Procedure and Bootstrap-t). The conclusion is that simulated and observed means of the fields are not different at the 5% significance level. The determined variability of the fields is also in good agreement except the space variability in cloud cover. Time mean and anomaly patterns are in good coincidence in case of the comparisons of cloud cover fields, but in reduced coincidence in case of precipitation.With 9 Figures  相似文献   

10.
We report on measurements of the near-field dispersion of contaminant plumes in a large array of building-like obstacles at three scales; namely, at full-scale in a field experiment, at 1:50 scale in a wind-tunnel simulation, and at 1:205 scale in a water-channel simulation. Plume concentration statistics extracted from the physical modelling in the wind-tunnel and water-channel simulations are compared to those obtained from a field experiment. The modification of the detailed structure of the plume as it interacts with the obstacles is investigated. To this purpose, measurements of the evolution of the mean concentration, concentration fluctuation intensity, concentration probability density function, and integral time scale of concentration fluctuations in the array plume obtained from the field experiment and the scaled wind-tunnel and water-channel experiments are reported and compared, as well as measurements of upwind and within-array velocity spectra. Generally, the wind-tunnel and water-channel results on the modification of the detailed plume structure by the obstacles were qualitatively similar to those observed in the field experiments. However, with the appropriate scaling, the water-channel simulations were able to reproduce quantitatively the results of the full-scale field experiments better than the wind-tunnel simulations.  相似文献   

11.
A Lagrangian advection scheme (LAS) for solving cloud drop diffusion growth was previously proposed (in 2020) and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional (1.5D) cloud bin model for a deep convection case. The simulation results were improved with the new scheme over the original Eulerian scheme. In the present study, the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO (Rain in Cumulus over the Ocean) campaign. The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS. Comparing the model simulation results with aircraft observation data, the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured. The LAS is robust and reliable for the simulation of rain embryo formation.摘要云滴凝结增长的拉格朗日平流方案(LAS)于2020年提出, 并通过一维半(1.5D)分档云模式模拟深对流个例得到验证. 相比原先的欧拉平流方案, 新方案的使用改进了模拟结果. 本研究中, 我们进行了海洋性浅积云雨胚形成的个例模拟研究, 个例取自RICO (Rain in Cumulus over the Ocean) 外场试验. 浅积云个例的模拟同样使用耦合了LAS的1.5D分档云模式. 对比飞机观测数据, 我们认为模拟结果较好的刻画了积云的总体微物理特征和精细的云滴谱分布, 利用LAS模拟雨胚形成是合理可信的.  相似文献   

12.
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.  相似文献   

13.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

14.
一个中国沿岸台风风暴潮数值预报系统的建立与应用   总被引:1,自引:0,他引:1  
依据三维斜压海洋环流模式POM建立了一个中国沿岸台风风暴潮数值预报业务系统.台风风场模型考虑了台风移动和周围环境风场的影响,采用了较合理的强风情况下的风应力计算公式,建立了稳定合理的模式海洋环流气候状态和模式边界条件.大量的数值模拟结果表明,该模式能较好地重现历史台风风暴增水过程,对近2年台风风暴潮个例的预报结果表明,该业务系统对台风风暴增水具有较好的预报能力,文章同时分析了模式存在的一些问题.该业务系统实现了从资料采集、模式运行到预报结果输出的全自动化,显示采用图片和MICAPS两种方式,后者与现有气象业务平台一致.  相似文献   

15.
We use the mesoscale meteorological model Meso-NH, taking the drag force of trees into account under stable, unstable and neutral conditions in a real case study. Large-eddy simulations (LES) are carried out for real orography, using a regional forcing model and including the energy and water fluxes between the surface (mostly grass with some hedges of trees) and the atmosphere calculated using a state-of-the-art soil-vegetation-atmosphere-transfer model. The formulation of the drag approach consists of adding drag terms to the momentum equation and subgrid turbulent kinetic energy dissipation, as a function of the foliage density. Its implementation in Meso-NH is validated using Advanced Regional Prediction System simulation results and measurements from Shaw and Schumann (Boundary-Layer Meteorol, 61(1):47?C64, 1992). The simulation shows that the Meso-NH model successfully reproduces the flow within and above homogeneous covers. Then, real case studies are used in order to investigate the three different boundary layers in a LES configuration (resolution down to 2 m) over the ??Lannemezan 2005?? experimental campaign. Thus, we show that the model is able to reproduce realistic flows in these particular cases and confirm that the drag force approach is more efficient than the classical roughness approach in describing the flow in the presence of vegetation at these resolutions.  相似文献   

16.
We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer.  相似文献   

17.
Summary ?At the Deutscher Wetterdienst (DWD) an internal project named LITFASS was running to determine the representative turbulent fluxes of heat and momentum over heterogeneous land surfaces by observation and simulation. The project took advantage of the infrastructure of the Research Division at the DWD, where model research capacity is combined with the measurements made at and around the Meteorological Observatory Lindenberg. The paper describes the simulation component of the LITFASS-project. It consists of a high-resolving model, derived from the new operational non-hydrostatic, compressible Lokal-Modell (LM), which is denoted LLM (LITFASS-Lokal-Modell). The integration area covers the lower atmosphere in the vertical up to 3000 m with 39 model layers. The horizontal size of the integration area with 145 × 145 grid points (horizontal mesh width Δs = 96.5 m) corresponds to a typical grid box of a meso-scale model. The LLM has to operate under real meteorological conditions. Therefore, the LLM is driven by time-dependent measured vertical profiles of wind, temperature and humidity and surface-based measurements (of radiation, precipitation, soil properties) supported by satellite information. The profiles are available for a great variety of weather situations occurring during the simulation period (1–20 June 1998). First model results from extended 24 hour-integrations against different kinds of measurements are discussed. They reveal the LLM to become a promising validation instrument, from which a systematic, sustainable validation system can be established beyond LITFASS for improving parameterization schemes in the NWP models of the DWD. Received July 18, 2001; revised March 15, 2002; accepted May 30, 2002  相似文献   

18.
An uni-modal Lagrangian Dust Model (LDM) was developed to simulate the dust concentrations and source-receptor (SR) relationships for recent Asian dust events that occurred over the Korean Peninsula. The following dust sources were used for the S-R calculation in this study: S-I) Gurbantunggut desert, S-II) Taklamakan desert, S-III) Tibetan Plateau, S-IV) Mu Us Desert, S-V) Manchuria, and S-VI) Nei Mongol and Gobi Desert. The following two 8-day dust simulation periods were selected for two case studies: (Period A) March 15–22, 2011, and (Period B) April 27–May 4, 2011. During two periods there were highly dense dust onsets observed over a wide area in Korea. Meteorological fields were generated using the WRF (Weather Research and Forecasting) meteorological model, and Lagrangian turbulent properties and dust emission were estimated using FLEXPART model and ADAM2 (Asian Dust Aerosol Model 2), respectively. The simulated dust concentrations are compared with point measurements and Eulerian model outputs. Statistical techniques were also employed to determine the accuracy and uncertainty associated with the model results. The results showed that the LDM compared favorably well with observations for some sites; however, for most sites the model overestimated the observations. Analysis of S-R relationships showed that 38–50% of dust particles originated from Nei Mongol and the Gobi Desert, and 16–25% of dust particles originated from Manchuria, accounting for most of the dust particles in Korea. Because there is no nudging or other artificial forcing included in the LDM, higher error indicators (e.g., root mean square error, absolute gross error) were found for some sites. However, the LDM was able to satisfactorily simulate the maximum timing and starting time of dust events for most sites. Compared with the Eulerian model, ADAM2, the results of LDM found pattern correlations (PCs) equal to 0.78-0.83 and indices of agreement (IOAs) greater than 0.6, suggesting that LDM is capable of estimation of dust concentrations with the quantitative information on the S-R relationships that can be easily obtained by LDM.  相似文献   

19.
20.
北京市一次大雾过程边界层结构的模拟研究   总被引:11,自引:1,他引:11  
利用一个包括土壤 植被 大气相互作用的一维边界层模式 ,对 1999年 11月发生在北京的一次大雾过程的边界层特征进行了数值模拟。通过与相应时段边界层观测资料的对比表明 ,模式能较好地模拟出雾的大气边界层结构特征 ,以及雾的发生、消散时间和持续过程。由于模式中包括了辐射和平流物理过程 ,因此 ,模拟结果进一步证实相应的雾属于平流辐射雾。另外 ,对模式模拟结果的不足之处和可能原因也进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号