首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究鄂尔多斯盆地延长组陆相页岩的吸附能力,选取粒度为0.28~0.18mm(60~80目)的页岩样品,运用吸附等温测试实验研究了温度、压力、有机碳含量、含水饱和度对页岩吸附规律的影响,对比研究了不同气体在页岩上的吸附能力;运用Langmuir吸附模型拟合实验结果,探索了不同影响因素与拟合参数之间的相互关系。研究表明:吸附量随压力、有机碳含量的增加逐渐升高;随温度的升高而降低;在含水的情况下,气体的吸附量减小;不同气体的吸附能力大小依次为:CO2CH4N2。Langmuir吸附模型可以很好地描述测试压力范围内气体的吸附规律,根据拟合参数与温度、有机碳含量之间的线性关系,对Langmuir吸附模型进行了修正,预测出了不同深度、不同有机碳含量下的页岩气吸附量,验证了页岩气在高压下的"负吸附"现象。  相似文献   

2.
为了解高压条件下二氧化碳(CO2)对页岩微观孔隙结构改造及吸附行为,以四川盆地焦页6井页岩为研究对象,通过低温N2吸附和重量法等温吸附实验,研究了不同温压条件下CO2处理前后的页岩微观结构特征及CO2在页岩中的吸附行为.研究表明随处理温度升高,CO2作用后的页岩比表面积呈下降趋势,平均孔径和孔体积呈上升趋势,微孔、中孔比例减少,宏孔比例增大.CO2会改变页岩孔隙结构,改变程度与温度呈正相关关系.研究同时表明页岩对CO2的过剩吸附量随压力增大而增加直至达到最大值,后随压力增大而减小;绝对吸附量随压力增大而增加,在40 MPa之后,吸附量趋于稳定.页岩对CO2的吸附行为与温度压力有关,在高压条件下,Langmuir模型依然能较好地拟合CO2在页岩中的吸附.   相似文献   

3.
通过实验获得了CH4和N2及其二元混合气体的等温吸附方程,并利用扩展Langmuir方程对二元混合气体的吸附行为进行了预测。结果表明,利用纯CH4气体的等温吸附方程和扩展Langmuir方程对二元混合气体吸附行为的预测结果,均与二元混合气体的等温吸附实验数据存在较大误差。所以,当煤层气中合有一定数量的非甲烷气体时,只有通过混合气体的等温吸附实验,才能获得准确的吸附特性参数。  相似文献   

4.
页岩气是赋存于泥页岩中的自生自储天然气,其赋存形式具有多样性,包括游离态、吸附态和少量的溶解态。其中吸附态是页岩气的主要赋存方式,占到页岩气总含量20%~85%。页岩吸附气含气量是计算页岩气资源量的关键性参数,是评价泥页岩是否具有开采价值的重要标准。国内外学者针对不同地区不同类型泥页岩做了大量的等温吸附实验,然而等温吸附实验只能开展恒定温度下的页岩吸附实验,不能研究任意温度下页岩气吸附能力。笔者选取渝东南地区4口井8个龙马溪组泥页岩样品开展气体(CH4、N2、CO2)吸附实验、有机碳含量分析、X-衍射岩矿分析、SEM扫描电镜实验,研究页岩吸附甲烷能力的主要控制因素。在高过成熟阶段,丰富的有机质发育大量的微孔隙,使得页岩对气体的吸附能力增加;在地下页岩储层含水条件下,黏土矿物主要吸附水,而有机质由于具有亲油气性,使得页岩气绝大部分吸附在页岩有机质表面,且有机质吸附甲烷等量吸附热远大于黏土矿物,因此页岩吸附甲烷最重要的内部控制因素是有机碳含量。甲烷等温吸附实验表明,随温度升高页岩吸附量显著降低,随压力增加,页岩吸附量增加,当压力达到一定值时,页岩吸附量不再随压力的增加而增加,最大甲烷吸附量随温度具有线性降低的趋势,且兰氏压力的对数与温度的倒数有很好的线性关系。基于兰氏方程,以甲烷等温吸附实验数据为基础,利用多元线性回归的方法,建立兰氏体积与w(TOC)、温度的关系及兰氏压力与温度的关系,带入兰氏方程,建立温度压力耦合控制下的扩展兰氏方程,进而计算地层温度压力条件下页岩储层吸附甲烷能力。结果表明:随深度增加,在温度压力耦合控制下,泥页岩吸附甲烷能力先增加后降低,800~1350m达到最大吸附能力;浅层压力对页岩吸附甲烷能力起主要作用,随深度的增加温度对页岩吸附甲烷能力控制作用增强;随w(TOC)增大,富有机质页岩吸附甲烷能力增加,达到最大吸附能力时的深度也随之增加。当页岩有机碳含量为1%时,页岩最大甲烷吸附量为1.6m3/t,当页岩有机碳含量为3%时,页岩最大甲烷吸附量为2.5m3/t,每增加2%的w(TOC)页岩最大吸附能力大约增加1 m3/t。  相似文献   

5.
沈瑞  郭和坤  胡志明  熊伟  左罗 《地学前缘》2018,25(2):204-209
针对目前页岩吸附等温线测试温度、压力通常未达到储层温压条件这一问题,设计了页岩高温高压吸附等温线测试方法,研究了储层温度、压力条件下页岩吸附等温线特征,以实际页岩岩心为例计算了游离气和吸附气随压力的变化规律,并采用全直径页岩氦气和甲烷控压生产实验研究了吸附气对产气特征的影响。结果表明:视吸附量先随压力增大而增大,到达峰值之后视吸附量随压力的增大而减小;在低压条件下,采用Langmuir外推计算的吸附气量与高压实验计算的吸附气量相差不大;而在高压条件下,采用低压Langmuir理论推算总含气量高估9.2%;低于临界解吸压力时,吸附气解吸附使得单位压差产气量增加;高于临界解吸压力时,吸附气对单位压差产气量几乎没有影响;开发初期,低于临界解吸压力范围较小,吸附气对产气量贡献较小,尽可能动用游离气是高效开发的关键。  相似文献   

6.
研究了河北开滦矿区不同变质程度的煤对不同配比CH4/CO2二元气体等温解吸特性,并用扩展Langmuir方程的推论计算了CH4/CO2二元气体各组分在吸附相中的浓度,分析了其变化特征。结果表明:在开滦矿区煤对CH4/CO2二元气体解吸过程中,中等变质程度煤(Ro=1.21%)对混合气体的吸附能力大于低变质程度煤(Ro=0.58%),且混合气体中CO2浓度越大,总吸附量越多。吸附相中CH4的相对浓度是逐渐降低的,CO2的相对浓度是逐渐升高的。开滦矿区中等变质程度煤相对于低变质程度煤,用CO2气体置换煤层中CH4,可以获得较高的单位压降CH4解吸率,注入CO2的量越多、相对浓度越高,其置换效果就越好,更适于往煤层注入CO2提高煤层气产量技术的实施。  相似文献   

7.
近年,四川盆地周缘复杂构造区已成为我国页岩气勘探开发的重要目标,本文以黔北牛蹄塘组富有机质页岩为研究对象,系统研究了储层特征和吸附能力演化。结果显示,黔北牛蹄塘组页岩TOC含量介于0.38%~9.62%,成熟度介于3.66%~3.75%,干酪根以I类腐泥型为主;物质组成以石英、长石、方解石、黄铁矿和黏土矿物为主。牛蹄塘组页岩的“过剩”吸附量随着压力的增大迅速增加,但随着压力的进一步增大,吸附量的增加速率减小。拟合的Langmuir体积(GL)在3.18~3.79cm3/g之间变化,而PL值介于1.83~2.85MPa。  相似文献   

8.
河北开滦矿区晚古生代煤对CO2 和CH4 气体吸附模型探讨   总被引:2,自引:0,他引:2  
对河北开滦矿区不同变质程度的煤进行了纯CO2和纯CH4气体等温吸附实验,并用Langmuir模型、三参数BET模型和吸附势理论模型(DR,DA)对煤的吸附实验数据进行了拟合,检验了各模型的拟合程度。结果表明:中煤阶烟煤的马家沟矿9号煤(Ro, ran = 1.21%)对CH4和CO2吸附能力比低煤阶烟煤的林南仓矿11号煤(Ro, ran = 0.58%)的吸附能力大;在相同压力下,同一煤样对CO2的吸附能力明显大于对CH4的吸附能力。马家沟矿9号煤对CO2和CH4的等温吸附线具有典型的I型特征,各模型对其吸附行为拟合误差相差很小,可用Langmuir方程描述;林南仓矿煤等温吸附线较复杂,因用Langmuir描述误差较大,应优先选择误差较小的吸附势理论DA模型来描述其吸附行为。9号煤对CH4和11号煤对CO2和CH4的吸附均以单分子层吸附为主。  相似文献   

9.
吸附势理论在煤层气吸附/解吸中的应用   总被引:4,自引:0,他引:4  
苏现波  陈润  林晓英  宋岩 《地质学报》2008,82(10):1382-1389
煤层气的吸附/解吸将导致煤层甲烷碳同位素以及煤层气多组分分馏,使得煤层气富集区预测成为可能;并为揭示注入CO2增强CH4产出提供依据。本文根据Polanyi吸附势理论和实测及收集的等温吸附试验数据,探讨煤层甲烷碳同位素和多组分气体的分馏。通过研究,得到如下两个结论:①13CH4在煤表面的吸附势普遍高于12CH4,也就是说13CH4与12CH4相比具有优先吸附、滞后解吸的特点。这种差异具有随压力增加而增加的特点。②煤层气吸附/解吸过程中CH4和CO2的分馏可归纳为以下3种情形: a. CO2和CH4的吸附/解吸等温线不相交,CO2的吸附势大于等于CH4,在CO2和CH4吸附势接近的中压阶段(1~2.5 MPa)不利于注CO2驱CH4,高压、低压阶段均有利; b. 因CH4的吸附/解吸等温线相交造成CH4和CO2的吸附特性曲线相交,在高压条件(>2.5 MPa)下利于注CO2驱CH4; c. 因CO2的吸附/解吸等温线相交造成CH4和CO2的吸附特性曲线相交,在高压条件(>2.5 MPa)下利于注CO2驱CH4。吸附势理论的引入为定量评价注入二氧化碳驱甲烷工艺参数和有利储层的选择提供了方法,并揭示了在高压条件(>2.5 MPa)下总是有利于向煤层注入CO2强化CH4产出。  相似文献   

10.
柴达木盆地东部石炭系页岩是一套待开发的优质烃源岩,吸附是页岩气最主要的储集状态,但针对该区页岩吸附特征的研究较少。依据物质守恒与热力学平衡原理,运用自主设计的气固双相等温吸附实验仪,参考煤的高压等温吸附测定行业标准,对取自柴达木盆地东部石浅1井的页岩样品进行了不同温度(30 ℃、40 ℃、50 ℃和60 ℃)的甲烷等温吸附实验研究,并运用LangmuirFreundlich(L F)模型对吸附量实验值进行非线性回归分析;根据ClausiusClapeyron方程计算得到页岩对甲烷的等量吸附热方程。研究结果表明:压力一定时,页岩对甲烷的吸附量随着温度升高而降低;温度一定时,随压力升高,甲烷吸附量出现先增大后降低的现象,具有典型的超临界吸附特征;L F模型对等温吸附过程拟合效果良好,实验结果将模型中4个参数确定,且各参数物理意义明确;计算得到等量吸附热与吸附量之间的关系为:q=-3 679.7n+9 779.5,等量吸附热随吸附量增大而降低。等量吸附热结合L F模型可以预测任意温度、压力下页岩对甲烷的吸附量,且预测值与实验所得数据结果吻合较好,对页岩气储量评估与开发利用具有实际意义。  相似文献   

11.
煤层处置CO2 的二元气- 固耦合数值模拟   总被引:2,自引:0,他引:2  
利用不可开采煤层处置二氧化碳可以有效控制温室气体的排放量并可驱动和增加煤层气资源的开采量。二氧化碳注入煤层处置后引入一个复杂的CH4-CO2二元气体与煤体的气固耦合问题,耦合了二元气体竞争吸附、竞争扩散,气体渗流以及煤体变形过程。基于COMSOL Multiphysics建立了二元气固耦合的有限元数值模型,并应用数值模拟实验对二元气固耦合进行了机理分析。模拟结果表明,CO2注入煤层后不断驱替CH4,CH4组分明显减少;气体吸附引起的煤层膨胀量可以抵消部分有效应力引起的压缩变形,由于CH4-CO2二元气体较单一CH4引起的煤层吸附膨胀量大,二氧化碳注入煤层后可以缓解煤层的压缩变形;不同孔隙压力条件下,吸附膨胀与孔隙压力两者竞争作用引起的煤层净变形不同,而净变形也控制着煤层孔隙压力和渗流率的变化,煤层渗透整体呈现先降后升,模拟进行到4.66×107 s时煤层渗透率发生反弹。  相似文献   

12.
页岩中气体的超临界等温吸附研究   总被引:1,自引:0,他引:1  
页岩气等温吸附实验多为临界温度以上的吸附实验,其得到的吸附量为过剩吸附量。为了研究页岩气超临界等温吸附机理,运用重力法,在临界温度以上,分别进行了甲烷和二氧化碳在页岩中的高压等温吸附实验。在分析经典型吸附和超临界吸附区别的基础上,通过修改的超临界等温吸附模型(Langmuir方程和微孔充填(Dubinin Radushkevich,D-R))对实验数据进行了拟合。结果表明:简单的Langmuir方程可近似拟合甲烷吸附实验数据,但精度不高,且无法拟合二氧化碳的吸附数据;将吸附相密度作为可优化参数,修改的微孔充填模型和Langmuir模型能很好地拟合甲烷和二氧化碳的吸附数据,其中修改的微孔充填模型拟合效果最好,且回归得到的超临界甲烷吸附相密度同文献报道的一致,表明吸附气可能以微孔充填的形式存在。   相似文献   

13.
为了更精确描述煤层气注气开发或二氧化碳煤层封存涉及到的多组分吸附过程,采用扩展Langmuir、理想吸附溶剂和二维状态方程预测不同煤对甲烷-二氧化碳混合气体的吸附,并将三种模型预测结果与实验数据进行对比分析,结果表明:二维状态方程模型对混合气体的吸附预测精度最高,并且能较好适用于高压系统的吸附预测。除此之外,从三种模型分离因子的变化规律可以看出,理想吸附溶剂和二维状态方程模型在吸附时都考虑了气体相对吸附性随平衡气相组分和压力的变化,而扩展Langmuir没有考虑该因素。因此,也表明理想吸附溶剂和二维状态方程模型在预测多组分气体相对吸附方面具有一定的优势。   相似文献   

14.
为了阐明CH4与CO_2在高岭石中的竞争吸附机理,采用蒙特卡洛方法构建了高岭石超胞模型,模拟计算了高岭石吸附CH4与CO_2在不同温度及压力条件下的变化规律,分析了不同孔径对高岭石吸附CO_2和CH4的影响。结果表明,不同温度下高岭石对CH4与CO_2分子的吸附量均符合Langmuir模型,在相同压力条件下,高岭石对CO_2分子的吸附量远远大于对CH4分子的吸附量;293.15 K时,高岭石对CO_2的吸附具有明显的竞争优势,CH4在CO_2分子的影响下不再符合Langmuir曲线,说明高岭石与CO_2分子的相互作用强于与CH4之间的相互作用;随着孔径的增大,高岭石对CH4与CO_2的吸附量均减小,表明CH4和CO_2主要吸附在微孔中;高岭石吸附CH4与CO_2分子后体系的总能量和非成键能发生了变化,说明高岭石与CO_2的相互作用能要强于高岭石与CH4的相互作用能,高岭石对CH4的吸附为典型的物理吸附,而对CO_2的吸附以物理吸附为主,且伴随着微弱的氢键作用。研究结果为阐明CO_2和CH4在黏土矿物的赋存机理以及CO_2驱替CH4的研究提供了一定的理论依据。  相似文献   

15.
吸附气是页岩气的重要组成部分,页岩气吸附机理的研究及吸附量的计算是页岩气研究的重点内容。在某些地质条件下,页岩气组成复杂,不仅包含甲烷,还有一定量的乙烷等湿气以及氮气和二氧化碳等非烃气体,因此有必要针对页岩开展多元气体竞争吸附研究。本文在前人研究基础上,分析页岩中多元气体竞争吸附的机理,介绍扩展Langmuir方程、理想吸附溶液理论(IAST)和晶格密度泛函理论(Lattice DFT)等3种竞争吸附预测模型,探讨有机质含量、页岩组成、孔隙结构、成熟度、气体组成、含水率和压力等影响页岩中多元气体竞争吸附的因素,阐述页岩中多元气体竞争吸附的研究现状并指出其中存在的问题与难点,并对页岩中多元气体竞争吸附研究的发展趋势和需要解决的问题进行探讨。  相似文献   

16.
N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定   总被引:1,自引:1,他引:0  
利用混合气体的标准样品对激光拉曼探针进行标定,可以快速准确地对包裹体中的无机及有机气相组分进行定量分析。而常用的商用钢瓶装混合气体标样,存在费用高、气体组成单一固定等缺点。本文设计了一套在线标样制备装置,提出一种在线配置不同浓度和压力条件下混合气体标样的方法。利用高纯度(纯度99.999%)的N2、CH4以及CO2钢瓶气,经过在线混合增压,在5 MPa和10 MPa条件下制备了N2摩尔分数为30%、50%和70%的N2-CH4以及N2-CO2混合气体在线标样。该方法制备的标样与70%N2+30%CO2的商用钢瓶气标样对比表明,CO2与N2的拉曼相对峰高以及相对峰面积值的误差在4%以内,具有较高的准确度和重现性。通过不同压力和浓度条件下CH4以及CO2的拉曼相对定量因子测定表明,气体的相对定量因子在5~10 MPa压力条件下与压力及组成无关。地质样品应用结果表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,为激光拉曼标定、气体组成原位测量等提供了一种新的技术思路。  相似文献   

17.
煤吸附多组分气体的特征及模型研究   总被引:2,自引:0,他引:2  
以煤吸附多组分气体实验为基础,探讨了长焰煤、焦煤和无烟煤分别吸附不同比例的CH4+N2和CH4+CO2二元混合气的吸附特征,并考察了3种多组分气体吸附模型的预测效果.所选模型包括Extended-Langmuir方程(扩展的Langmuir方程)、Ideal Adsorbed Solution理论(理想吸附溶液理论)和Numerical Analysis方法(数值分析方法),并且进一步讨论了多组分气体吸附过程中的组分分割情况.  相似文献   

18.
在容量法对页岩的等温吸附实验测试中,发现随压力增加吸附量呈现减小趋势,甚至出现负吸附量,测得的吸附常数Langmuir体积和Langmuir压力出现负值,与实际不相符,造成实验结果和吸附常数失去应用价值。从页岩吸附测试方法、吸附测试仪器等方面系统分析了容量法页岩吸附实验出现"倒吸"现象的原因;提出了实验中自由空间体积测试和吸附气含量计算存在的问题;并对页岩吸附实验方法和页岩吸附测试仪器提出相关建议。   相似文献   

19.
为了研究陆相页岩的吸附机理,以鄂尔多斯盆地甘泉地区延长组页岩为研究对象,开展了不同温度下页岩等温吸附实验,分析了延长组页岩的吸附特性及等量吸附热特征,实现了页岩等温吸附量的预测。结果表明:超临界条件下,页岩等温吸附曲线极大值的出现与实验压力、比表面积及吸附气有关;与龙马溪组页岩相比,延长组页岩等量吸附热与吸附量呈正相关关系,符合幂函数拟合,且在相同吸附量下,延长组页岩等量吸附热较低,具有较强的非均质性和较弱的吸附作用力;等量吸附热不能反映吸附性能的强弱;基于等量吸附热的页岩等温吸附曲线预测方法在低实验温度、低气体压力条件下具有较高的预测精度。   相似文献   

20.
注CO2提高煤层气采收率的模拟实验研究   总被引:1,自引:1,他引:0  
根据煤储层的吸附/解吸机理,模拟煤层气井"排采-注气-排采"的生产过程,进行CH4、CO2的单相气体吸附/解吸和CO2注入置换煤层CH4的实验,得到了CH4和CO2二元气体相组分变化数据和CH4和CO2混合气体的相分离图解.结果表明,在CH4和CO2二元气体的竞争吸附中,CO2组分的吸附速率是先快后慢,而CH4组分的吸附速率先慢后快,解吸时则相反.反映了CO2组分在与CH4组分的竞争吸附中占据优势,优先被吸附;同时发现注入气体数量越大,注入气体中CO2组分浓度越高,单位压降下的CH4解吸率和CO2吸附率越高.实验结论对工业规模的煤层气开发试验具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号