共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamid Sadat-Hosseini Angelo Olivieri Hirotada Hashimoto Gabriele Bulian 《Ocean Engineering》2010,37(10):859-878
Complementary CFD, towing tank EFD, and nonlinear dynamics approach study of parametric roll for the ONR Tumblehome surface combatant both with and without bilge keels is presented. The investigations without bilge keels include a wide range of conditions. CFD closely agrees with EFD for resistance, sinkage, and trim except for Fr>0.5 which may be due to free surface and/or turbulence modeling. CFD shows fairly close agreement with EFD for forward-speed roll decay in calm water, although damping is over/under predicted for largest/smaller GM. Most importantly CFD shows remarkably close agreement with EFD for forward-speed parametric roll in head waves for GM=0.038 and 0.033 m, although CFD predicts larger instability zones at high and low Fr, respectively. The CFD and EFD results are analyzed with consideration ship motion theory and compared with Mathieu equation and nonlinear dynamics approaches. Nonlinear dynamics approaches are in qualitative agreement with CFD and EFD. The CFD and nonlinear dynamics approach results were blind in that the actual EFD radius of gyration kxx was not known a priori. 相似文献
2.
An extended version of Melnikov's method is implemented in order to predict more accurately the threshold of global surf-riding for a ship operating in steep following seas. The key advantage of the proposed method is that it overcomes the limitation of small damping and/or small forcing that are intrinsic to the implementation of the standard Melnikov's method. A reference ITTC ship is used here by way of example and the result is compared to that obtained from standard analysis as well as numerical simulations. Because of the primary drawback of the extended Melnikov's method is the inability to arrive at a closed form equation, in this work the authors arrive at a “best fit” approximation to the extended Melnikov numerically predicted result. 相似文献
3.
Influence of non-linearities on the limits of stability of ships rolling in head seas 总被引:3,自引:0,他引:3
The present paper describes an investigation on parametric resonance in head seas in which a new third-order coupled mathematical model is considered. The restored modes of heave, roll and pitch are contemplated. The discussion is illustrated for the case of a transom stern fishing vessel at different speeds. It is pointed out that numerical simulations employing the new model are successfully compared to experimental results previously obtained for the vessel.Considering that analyticity is an important tool when handling complex stability issues, some theoretical dynamic characteristics of the equations are discussed. By means of the analysis of the coupled linear variational equation derived from an extended third-order model, the appearance of super-harmonics and increased rigidity proportional to wave amplitude squared due to third-order terms is demonstrated.In the present paper, an important tool is explored, that is the analysis of the limits of stability obtained from the new model. Limits of stability are a well-known and practical way of looking into the problem of parametric resonance. New limits of stability are derived and compared to the more conventional Strut diagram. Dynamic characteristics associated with the new limits of stability are discussed. The influence of different parameters is investigated, including vessel speed, damping and tuning. Consistent and revealing results are obtained through the analysis of the new limits of stability for different speeds and damping. 相似文献
4.
The present paper describes an investigation on the relevance of parametric resonance for a typical fishing vessel in head seas. Results for different Froude numbers are discussed based on experimental, numerical and analytical studies.The first region of resonance is investigated. Distinct wave amplitudes are considered. Some intense resonances are found to occur. The paper compares the experimental results with non-linear time simulations of the roll motion. Very good agreement is found, even when large motions take place.Finally, in order to analyze the experimental/numerical results, analytic consideration is given to distinct parameters affecting the dynamic process of roll amplification. The influence of heave, pitch, wave passage effect, speed and roll restoring characteristics are discussed. 相似文献
5.
The dynamic stability of fishing vessels in longitudinal regular waves is investigated, both analytically and experimentally. In particular, the influence of stern shape on the parametric stability of fishing vessels is studied. Vessels TS and RS have very similar main characteristics, but their sterns are different. Although their linear responses are comparable, both analytical and experimental investigations indicate substantial differences in their dynamic stability in longitudinal regular waves. Strong resonances are found for the vessel with the deep transom. The analytical method takes into consideration the effects of the heave and pitch motions and wave passage and shows good agreement with experimental results. Stability limits are obtained for different conditions and are used as an aid in the discussion of the results obtained in the tests when relevant parameters are changed, such as wave amplitude and frequency, metacentric height and roll damping moment. 相似文献
6.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions. 相似文献
7.
In an attempt to contribute to efforts for a robust and effective numerical tool addressing ship motion in astern seas, this paper presents the development of a coupled non-linear 6-DOF model with frequency dependent coefficients, incorporating memory effects and random waves. A new axes system that allows straightforward combination between seakeeping and manoeuvring, whilst accounting for extreme motions, is proposed. Validation of the numerical model with the results of benchmark tests commissioned by ITTC's Specialist Group on Stability demonstrated qualitative, yet not fully satisfactory agreement between numerical and experimental results in line with other predictive tools. The numerical results indicate that the inclusion of frequency coefficients definitely affects the accuracy of the predictions. In order to enhance further the numerical model and obtain useful information on motion coupling, extensive captive and free running model tests were carried out. Good agreement with the experimental results was achieved. These studies provide convincing evidence of the capability of the developed numerical model to predict the dangerous conditions that a ship could encounter in extreme astern seas. As a result, it could offer new insights towards establishing relationships linking ship behaviour to design, environmental and operational parameters. 相似文献
8.
An extensive experimental investigation on four SWATH hull forms has been conducted in calm water and in regular waves at University of Naples Federico II. Calm water tests have been analyzed in the range of Froude number FrT from 0.1 to 0.6. For all four SWATH configurations at the speed, corresponding to FrT 0.32, the behaviour in regular waves has been tested. The results of heave, pitch and vertical accelerations are presented in nondimensional form as RAO. For the “most promising” SWATH #4 configuration, a set of stabilizing fins have been designed and an active stabilization system has been developed. The developed SWATH#5 has been tested in calm water on three displacements in the range of FrT from 0.1 to 0.65. The dynamic wetted surface has been identified and the residual resistance coefficient CR as well as RT/Δ are reported. Seakeeping tests have been performed in regular head sea and in head and following irregular sea at FrT = 0.50. The conditions for the occurrence of dynamic longitudinal instabilities have been identified. The results allows to comment the effect of slenderness of struts and SWATH’s immersed bodies on resistance and seakeeping and concerns the applicability of SWATH concept to small craft. 相似文献
9.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas. 相似文献
10.
In this paper, the modelling of strong parametric resonance in head seas is investigated. Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are contemplated. A third-order mathematical model is introduced, aimed at describing strong parametric excitation associated with cyclic changes of the ship restoring characteristics. A derivative model is employed to describe the coupled restoring actions up to third order. Non-linear coupling coefficients are analytically derived in terms of hull form characteristics.The main theoretical aspects of the new model are discussed. Numerical simulations obtained from the derived third-order non-linear mathematical model are compared to experimental results, corresponding to excessive motions of the model of a transom stern fishing vessel in head seas. It is shown that this enhanced model gives very realistic results and a much better comparison with the experiments than a second-order model. 相似文献
11.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations. 相似文献
12.
Increasing propulsion efficiency, safety, comfort and operability are of the great importance, especially for small ships operating on windy sites like the North Sea and the Baltic Sea. Seakeeping performance of ships and offshore structures can be analysed by different methods and the one that is becoming increasingly important is CFD RANS. The recent development of simulation techniques together with rising HPC accessibility enables performance of advanced seakeeping simulations for ships in a full scale. The paper presents CFD seakeeping analysis for a case study vessel in two variants: V-shaped bulbous bow hull form (as built) and innovative hull form (X-bow type). The study presents the influence of redesigning the ship on selected seakeeping aspects. The advanced CFD model, with the application of overset mesh technique, was described in detail. Selected numerical results were validated on the basis of experimental testing in a towing tank and showed good agreement. The approach demonstrated here of performing the CFD seakeeping simulations for the analysis of ship performance in a full scale and close to real loading conditions has direct application to the design process as well as in determination of optimal operational parameters of any ship. 相似文献
13.
The dynamics of a damaged ship in waves is a complex phenomenon regarding fluid and structure interactions. Flooded water motions in the damaged compartment could be influenced by decks, obstructions and obstacles in the compartment. This becomes particularly relevant in case of flooding in the engine room that is usually characterized by the presence of large objects such as engines and machineries. In such cases the possibility to better understand the behavior of a damaged ship, influenced by the fluid and structure interactions, could provide novel outcomes and thus enhance the damaged ship safety.In this paper an experimental campaign is conducted on a passenger ferry hull. The effects of obstacles in the engine room compartment, such as decks and engines, on ship roll responses, are studied. Roll decay in still water and steady roll responses in beam regular waves at zero speed are measured for the empty compartment and for the compartment with obstructions, as defined above.The main outcomes from the conducted experiments disclose a mitigation of the resonant behavior of the coupled system, ship with damaged compartment, by having engine shapes occupying the flooded engine room. Moreover it is possible to observe how the resonant frequency of the ship modifies having a more realistic arrangement of damaged compartment and how motion RAOs and roll decay characteristics modify accordingly. 相似文献
14.
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better. 相似文献
15.
Estimation of ship motions using closed-form expressions 总被引:1,自引:0,他引:1
A semi-analytical approach is used to derive frequency response functions for the wave-induced motions for monohull ships. The results are given as closed-form expressions and the required input information for the procedure is restricted to the main dimensions: length, breadth, draught, block coefficient and water plane area together with speed and heading. The formulas make it simple to obtain quick estimates of the wave-induced motions and accelerations in the conceptual design phase and to perform a sensitivity study of the variation with main dimensions and operational profile. 相似文献
16.
For the non-negligible roll-coupling effect on ship maneuvering motion, a system-based method is used to investigate 4-DOF ship maneuvering motion in calm water for the ONR tumblehome model. A 4-DOF MMG model is employed to describe ship maneuvering motion including surge, sway, roll, and yaw. Simulations of circular motion test, static drift and heel tests are performed by solving the Reynolds-averaged Navier-Stokes (RANS) equations, after a convergence study quantifying the necessary grid spacing and time step to resolve the flow field adequately. The local flow field is analyzed for the selected cases, and the global hydrodynamic forces acting on the ship model are compared with the available experiment data. Hydrodynamic derivatives relating to sway velocity, yaw rate, and heel angle are computed from the computed force/moment data using least square method, showing good agreement with those obtained from EFD data overall. In order to investigate further the validity of these derivatives, turning circle and zigzag tests are simulated by using the 4-DOF MMG model with these derivatives. The trajectories and the time histories of the kinematic variables show satisfactory agreement with the data of free-running model tests, indicating that the system-based method coupled with CFD simulation has promising capability to predict the 4-DOF ship maneuvering motion for the unconventional vessel. 相似文献
17.
This paper addresses the problem of ergodicity of stochastic processes starting from a theoretical point of view, with the aim of obtaining a deeper understanding for practical applications. The problem is tackled bearing in mind the concept of ‘practical ergodicity’, that is, the possibility of obtaining reliable information about ensemble averages by using temporal averages. Some general analytical tools are given to address the problem of accuracy of temporal averages and an example of their use in a possible design of experiments is given. A series of Monte Carlo numerical simulations are performed by means of an analytical non-linear 1.5-DOF model of parametrically excited roll motion. The outcomes of such simulations are analysed to show the effect of ship speed and sea spectrum shape. The effect of wave grouping phenomenon is discussed with particular attention to the Doppler effect. Qualitative indications given by the numerical simulations are then compared with experimental tests showing a good agreement. Practical ergodicity of generated sea in towing tank is also briefly addressed. 相似文献
18.
多级可分离式自主水下航行器(MS-AUV)可搭载多种不同功能的载荷舱,并在目标海域完成载荷舱布放。其在海洋探测,海防等领域具有较高的应用价值。对MS-AUV进行了主体结构和分离机构的设计和研究,其中功能载荷舱与航行器本体采用真空连接方式,实现多级连接,降低了机构的复杂性,提高了载荷舱分离运动的稳定性和安全性。为了研究载荷舱与航行器分离的安全性,采用CFD和六自由度(6-DOF)刚体运动学的耦合方法来模拟其在水下的分离运动。在仿真过程中,采用弹簧光顺和局部重构混合网格生成方法的非结构化动态网格可以很好地适应大距离多体分离运动。仿真结果表明,在一定工况条件下,提高MS-AUV初始航行速度V0和分离机构弹簧刚度K有利于载荷与航行器本体分离。通过上述研究工作,验证了载荷分离方法的可行性,缩短研制周期,降低设计成本,对多级可分离式AUV样机的设计制造具有重要的参考价值。 相似文献
19.
This paper presents a complex control system of the ship motions in confined waters. The general structure of this system is based on the two different controllers connected in parallel. They are dedicated to the different tasks and operate in different conditions. One of them is based on the robust control technology while another is based on the fuzzy logic technique. To decide which controller to use depends on the velocity of the vessel. The control system was implemented at the first stage on a nonlinear multi-variable simulation model and at the second stage on a real-time object—floating, autonomous model of the very large crude carrier (VLCC tanker). The whole system was developed in the MATLAB/Simulink platform. 相似文献
20.
Traditionally, when using Melnikov's method to analyze ship motions, the damping terms are treated as small. This is typically true for roll motion but not always true for other and/or multiple degrees of freedom. In order to apply Melnikov's method to other and/or multiple-degree-of-freedom motions, the small damping assumption must be addressed. In this paper, the extended Melnikov method is used to analyze ship motion without the constraint of small linear damping. Two roll motion models are analyzed here. One is a simple roll model with nonlinear damping and cubic restoring moment. The other is the model with biased restoring moment. Numerical simulations are investigated for both models. The effectiveness and accuracy of this method is demonstrated. 相似文献