首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous observations of mass concentration and elemental composition of aerosol particles (PM2.5) were conducted at Tongyu, a semi-arid site in Northeast China in the spring of 2006. The average mass concentration of PM2.5 at Tongyu station was 260.9±274.4 μg m^-3 during the observation period. Nine dust events were monitored with a mean concentration of 528.0±302.7 μgm^-3. The PM2.5 level during non- dust storm (NDS) period was 111.65±63.37 μg m^-3. High mass concentration shows that fine-size particles pollution was very serious in the semi-arid area in Northeast China. The enrichment factor values for crust elements during the dust storm (DS) period are close to those in the NDS period, while the enrichment factor values for pollution elements during the NDS period are much higher than those in the DS period, showing these elements were from anthropogenic sources. The ratios of dust elements to Fe were relative constant during the DS period. The Ca/Fe ratio in dust aerosols at Tongyu is remarkably different from that observed in other source regions and downwind regions. Meteorological analysis shows that dust events at Tongyu are usually associated with dry, low pressure and high wind speed weather conditions. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongyu, and the northwest direction pathway was the main transport route.  相似文献   

2.
The Asian dust Aerosol Model 2 (ADAM2) with the MM5 meteorological model has been employed to study long-range transport process of Asian dust and to estimate dust emission, deposition (wet and dry) and concentration over the Asian dust source region and the downwind regions for dust events observed in Korea during the period of 20–29 December 2009, which is one of the dust events chosen by the 3rd Meeting of Working Group for Joint Research on Dust Sand Storm among Mongolia, China, Japan and Korea to study intensively for the development of an early warning system in Asia. It is found that the model simulates quite well the starting and ending times of dust events and the peak dust concentrations with their occurrence times both in the source region and downwind regions. The dust emission in the dust source region is found to be associated with a developing synoptic weather system accompanied with strong surface winds over the source region that usually travels east to southeastward across the source region and then turns to move northeastward toward the north western Pacific Ocean. The dust emitted in the source region is found to be split into two parts: one is transported southeastward to the East China Sea in front of the surface high pressure system and experiencing enhanced deposition due to the sinking motion induced by the southeastward traveling the surface high pressure system whereas, the other moves northeastward toward the surface low pressure system and then lifted upward to form a upper-level high dust concentration layer that results in a favorable condition for the long-range transport of dust. It is also found that the maximum ten-day total dust emission of about 23 t km?2 occurs in the domain Northwestern China (NWC). However, the maximum ten-day total dust deposition of 21 t km?2 with the maximum mean surface concentration of 555 μg m?3 and the column integrated mean concentration of 2.9 g m?2 occurs in the domain Central-northern China (CNC). The column-integrated PM10 concentration is found to increase toward northeastward especially in the domain North northeastern China (NNEC) due to the upper-level transported high PM10 concentration. The ten-day total dust deposition, mean surface PM10 and column integrated PM10 concentrations in the downwind domains are found to decrease away from the source region from 2.44 t km?2, 112 μg m?3 and 1.68 g m?2, respectively in the domain YES to 0.06 t km?2, 2.1 μg m?3 and 0.4 g m?2, respectively in the domain Northwestern Pacific 1 (NWP1). Much of the total dust deposition is largely contributed by wet deposition in the far downwind region of the seas while that is contributed by dry deposition in the source region.  相似文献   

3.
This study investigated meteorological, physical, and chemical characteristics of 2 severe Hwangsa (Asian dust, maximum average of PM10 above 1000 μg m?3) observed in Seoul, the capital city of Korea, during 30~31st May, 2008 (DSS2008) and 25~26th December, 2009 (DSS2009). DSS2008 and DSS2009 had a same source region and route. However, they have different meteorological conditions. DSS2009 had a shorter travel time from the source region to Korea and shorter duration time in Korea than DSS2008 due to a strong winter Siberian anticyclone. One of DSS2008 sample was affected by not only Asian dust but also a long-range transported haze due to consecutive influx after low pressure passed while DSS2009 sample collected only dust aerosol. For both cases, the mass concentration of coarse particles (PM10-1) increased by 3~14 times compared to that during non Asian dust period, however, that of fine particles (PM1) increased only in DSS2008. For DSS2008 water-soluble ion balance between anions and cations in fine mode was close to 1:1 while cations were higher than anions in coarse mode. NH4 + and Ca2+ were found to be the main contributing factors for the neutralization. Cl? loss was observed about 60% indicating an active interaction of Na+ with pollutants. Reconstruction of chemical compositions showed relatively high concentrations of secondary pollutants (NH4NO3 and (NH4)2SO4), CaCO3, and Ca(NO3)2 compared to that during non Asian dust period. DSS2009 exhibited the typical characteristics of Asian dust having a high concentration of Ca2+ with higher equivalent concentration of cations than anions in all size bins. Cl? loss was hardly observed. The secondary pollutants were lower than that of non Asian dust cases. The result of reconstruction of ionic components indicated the CaCO3 derived from soil particle, CaSO4, and Ca (NO3)2 were dominant in DSS2009.  相似文献   

4.
Results are presented of monitoring measurements of the mass concentration of PM10 (particles with the size of less than 10 μm) and PM2.5 (less than 2.5 μm) fine-dispersed aerosol fractions at the Sainshand and Zamyn-Üüd stations located in the Gobi Desert of Mongolia. Revealed are the annual variations of the mass concentration of PM10 and PM2.5 fine-dispersed aerosol fractions at these stations in 2008. The maximum values of monthly mean concentration during the year were observed in May in the period of dust storms. On the days with the steady calm weather, the mass concentrations of PM10 and PM2.5 varied within 5–8 μg/m3 (PM10) and 3–5 μg/m3 (PM2.5) at the Sainshand station. During the dust storms, the maximum values of concentration exceeded 1400 μg/m3 (PM10) and 380 μg/m3 (PM2.5) that is by 28 (PM10) and 15 (PM2.5) times higher than the maximum permissible concentration for the European Union. Results are given of studying the frequency and duration of dust storms in recent 20 years (1991–2010) in the Eastern Gobi Desert.  相似文献   

5.
The Asian Dust Aerosol Model 2 with the MM5 meteorological model has been employed to estimate the dust emission, dust concentration, and wet and dry deposition of dust in the Asian region for the month of March in 2010. It is found that the model simulates quite reasonably the dust (PM10) concentrations both in the dust source region and the downstream region of Korea. The starting and ending times of most dust events and their peak concentration occurrence times are well simulated. The monthly mean maximum surface dust concentration (PM10) is found to be 267???g?m?3 in the domain of central northern China (CNC). Monthly total maximum dust emission of more than 32?t km?2 and that of deposition of more than 25.4?t km?2 (dry deposition of 24?t km?2 and wet deposition of 1.4?t km?2) are found to occur in the domain CNC, whereas the monthly mean minimum surface dust concentration (PM10) is found to be 0.2???g?m?3 in the domain of the Tibetan Plateau, where the monthly total dust emission (4?kg?km?2) and the monthly total dust deposition (9?kg?km?2) are found to be minimum. This monthly total dust deposition of 9?kg?km?2 (dry deposition of 7?kg?km?2 and wet deposition of 2?kg?km?2) is as large as 2.25 times of that of emission (4?kg?km?2), suggesting net dust influx toward the Tibetan Plateau from the surrounding dust source regions. It is also found that the ratio of the total dust deposition to the total dust emission in the source region increases toward the downstream direction from 0.4 in the upstream source region of Taklimakan to 0.80 in the downstream source region of northeastern China. More than 90% of the total dust deposition is found to be contributed by dry deposition due to the lack of precipitation in the dust source region. The monthly mean dust concentration (PM10) is found to decrease with distance away from the dust source region. The monthly mean dust concentration of 62???g?m?3 over the Yellow Sea (YES) decreases to 4.3???g?m?3 over the Northwestern Pacific Ocean (NWP). The monthly total dust deposition in the downstream region is also found to decrease away from the source region from 2.33?t km?2 (dry deposition of 1.36?t km?2 and wet deposition of 0.97?t km?2) over the domain YES to 1.45?t km?2 (dry deposition of 0.16?t km?2 and wet deposition of 1.30?t km?2) over the domain NWP. A large amount of the total dust deposition over the seas is contributed by wet deposition (more than 90%), causing a small decreasing rate of the total dust deposition with distance from the source region. The estimated dust deposition could adversely impact the eco-environmental system significantly in the downstream regions of the Asian dust source region, especially over the seas.  相似文献   

6.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

7.

This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.

  相似文献   

8.
Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008–2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m?2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60–80 % of the samples collected, with 0.9–2.5 % for PM0–2.5, 3.5–7.0 % for PM0–10, 5.0–14.0 % for PM0–20 and 20.0–40.0 % for PM0–50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m?2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.  相似文献   

9.

In this study we present the seasonal chemical characteristics and potential sources of PM10 at an urban location of Delhi, India during 2010?2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM10 were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM10 was computed as 227?±?97 µg m?3 with a range of 34?734 µg m?3. The total carbonaceous aerosols in PM10 was accounted for 22.5% of PM10 mass concentration, whereas elements contribution to PM10 was estimated to be 17% of PM10. The statistical analysis of OC vs. EC and OC vs. WSOC of PM10 reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM10 indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning?+?fossil fuel combustion (BB?+?FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM10 in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.

  相似文献   

10.
Inhalable particles (PM10), with aerodynamic equivalent diameters that are generally 10 micrometers or smaller, are basic pollutants in many areas, especially in northern China, and thus the pollution from PM10 inhalable particulate matter is a growing concern for public health. Independent long-term observations are necessary to evaluate the efficacy of PM10 reduction actions. Variations in the PM10 concentration from 2006 to 2017 at an observation station (NJ) in Beijing were recorded and analyzed. The average value ±1 standard deviation of daily mean PM10 concentrations was 138.8 ±96.1 μg m-3 for 1307 days (accounting for 34.7% of the total days), showing PM10 concentration exceeding the National Ambient Air Quality Standard (NAAQS) 24-h average of 150 μg m-3. Particulate concentration depended upon various meteorological conditions as also observed in this work: at low wind speed (<4 m s-1), the concentrations of PM10 revealed a downward trend with -19 μg m-3 per unit of wind speed, but when wind speed rose (>4 m s-1), the values increased by 49 μg m-3 per unit of wind speed. In Beijing, air masses from northwest China, especially from the Gobi Desert and other desert areas, had net contributions to long-range transport of natural dust, enhancing the PM10 concentrations by up to 29%. Overall, PM10 mass concentration showed a significant downward trend with -8.0 μg/m3/yr from 2006 to 2017. Although with higher fluctuations in recorded data, similar downward trends derived from the ) in 2017 still exceeded the NAAQS standard. The results showed that there is still a long way to go to reduce PM10 in Beijing.  相似文献   

11.
Kuwait was exposed to a severe dust storm on 19 March 2003, the eve of operation ??Iraqi Freedom??. Three days of dust events (19, 26, 27 March) were analyzed for their aerosol optical and physical properties using ground-based and satellite-retrieved measurements. Ground-based measurements of aerosol optical depth (or thickness; AOD or AOT) at 675?nm, ?? 657, ?ngstrom coefficient ?? 936/657, particulate matter of diameter 10???m or less, PM10 (??g/m3), and meteorological parameters were analyzed for March 2003. AOT exceeded 3 for the 3?days of interest and PM10 concentrations reached as high value as 2,457???g/m3 on 19 March dust storm day. Retrieved aerosol characteristics from space using Moderate Resolution Imaging Spectrometer (MODIS) on board Terra and Aqua satellite were examined against ground-based measurements. A strong correlation was found between ground-based measurements of ?? 675 and the Terra-MODIS retrieved AOD550. The synoptic of the dust storm were analyzed and source regions were identified using back trajectory analysis and Total Ozone Mapping Spectrometer Aerosol Index.  相似文献   

12.
The 4-year data sets (1998–2001) of PM10 and other gaseous pollutants at four rural and urban monitoring sites provided by Environmental Protection Department of Hong Kong have been analyzed for days of extremely high and low PM10 levels. The annual means of PM10 concentrations are between 37 and 57 μg/m3. The level of high PM10 concentration is defined from the comparison of local and international standards. Episode days are mainly controlled by different meteorological conditions: the continental outflow, the land-sea breeze/weak synoptic forcings and the approaching tropical cyclones. Integrated approaches have been used to distinguish between the predominantly “territory wide” and “long-range transport” (LRT) episode days. Case studies of these types of episodes are presented and the number of episode days per year for each type has been estimated. It is found that the LRT contributions are significant and account for ∼66% of the PM10 episode days. Very high correlations between CO and PM10 concentrations, and between SO2 and PM10 concentrations, can be found during the “territory wide” episode days which implies the important contributions of fossil fuel combustion to the PM10 episodes. The number of “low level” PM10 days per year has decreased by a factor near 3 from 1998 to 2001. Precipitation scavenging is the major process causing low levels of PM10, irrespective of the associated weather systems. The regional annual background level is ∼9 μg/m3. With the exception of seasalt components, the average elemental concentrations of major inorganic species are similar for all of the sites during LRT events and constitute representative compositions of PM10 during such events.  相似文献   

13.
This paper reports aerosol chemical properties for the first time over a Korean Global Atmosphere Watch (GAW) supersite, Anmyeon (36°32′N; 126° 19′E), during 2003–2004 period. Total suspended Particulates (TSP) showed significant seasonal variation with consistent higher mass concentrations during spring season (average of up to 230?±?190 μg/m3). PM10 also followed similar trend with higher concentrations during spring (average of up to 170?±?130 μg/m3) and showed reduced concentrations during summer. PM2.5 showed a significant increase during summer (average of up to 60?±?25 μg/m3), which could be due to the influx of fine mode sea salt aerosols associated with the Changma front (summer monsoon). Chemical composition analysis showed enhanced presence of acidic fractions, majorly contributed by sulphates (SO 4 2- ) and nitrates (NO 3 - ) in TSP, PM10 and PM2.5 during different seasons. Enhanced presence of Calcium (Ca2+) was observed during sand storm days during spring. The high correlation obtained on matrix analysis between crustal ions and acidic ions suggests that the ionic compositions over the site are mainly contributed by terrestrial sources of similar origin. The neutralization factors has been estimated to find the extend of neutralization of acidicity by main basic components, and found to have higher value for Ammonium (up to 1.1) in different seasons, indicating significant neutralization of acidic components over the region by NH 4 + . Back trajectory analysis has been performed during different seasons to constrain the possible sources of aerosol origin and the results are discussed in detail.  相似文献   

14.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

15.
In each year, Dust and Sandstorms (DSSs) triggered by cold air masses enhance particle concentration over large areas in China during spring and winter. In this paper, daily Air Pollution Index (API) of 113 major cities in China during dust events was analyzed to present the influence of DSSs on urban air quality. From 2005 to 2010, a total of 93 dust events were identified, on average there are approximately 16 dust events in a year. The number of total polluted days caused by DSSs in 113 major cities ranged from 147 to 546 each year, with maximum in 2010 and minimum in 2007. The number of total heavily polluted days caused by DSSs in major cities ranged from 14 to 78 each year, with maximum in 2010 and minimum in 2005. DSSs affected major cities most severely during March to May. Furthermore, a typical DSS observed from 26 to 31 May 2008 was described in terms of meteorological features and PM10 concentration as well as API levels of 113 major cities. This event lead to high PM10 concentration and low visibility over major cities, with maximum daily PM10 concentration of 1511 μg m?3 in Chifeng on 28 May, which was directly caused by strong wind in front of surface high pressure system passing through sand source areas in Mongolia and North China. The most severe pollution occurred on 29 May, with 38 cities polluted and 7 cities heavily polluted.  相似文献   

16.
A continuous measurement of number size distributions and chemical composition of aerosol particles was conducted in Beijing in a dust storm event during 21-26 March 2001. The number concentration of coarse particles ( 〉2μm) increased more significantly than fine particles ( 〈2μm) during the dust storm due to dust weather, while the anthropogenic aerosols collected during the non-dust-storm period tended to be associated with fine particles. Elemental compositions were analyzed by using proton-induced X-ray emission (PIXE). The results show that 20 elements in the dust storm were much higher than in the non-dust-storm period. The calculated soil dust concentration during the dust storm was, on average, 251.8μg m^-3, while it was only 52.1μg m^-3 on non-dust-storm days. The enrichment factors for Mg, A1, P, K, Ca, Ti, Mn, Fe, C1, Cu, Pb, and Zn show small variations between the dust storm and the non-dust-storm period, while those for Ca, Ni and Cr in the dust storm were much lower than those in the non-dust-storm period due to significant local emission sources. A high concentration and enrichment factor for S were observed during the dust storm, which implies that the dust particles were contaminated by aerosol particles from anthropogenic emissions during the long-range transport. A statistical analysis shows that the elemental composition of particles collected during the dust storm in Beijing were better correlated with those of desert soil colleted from desert regions in Inner Mongolia. Air mass back-trajectory analysis further confirmed that this dust storm event could be identified as streaks of dust plumes originating from Inner Mongolia.  相似文献   

17.
Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2?±?46.4; 37.2?±?6.2; 15.2?±?5.4 and 18.0?±?5.1 μg m?3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning? +?soil dust, vehicular emissions?+?biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.  相似文献   

18.
Gaseous pollutants and PM2.5 aerosol particles were investigated during a tropical storm and an air pollution episode in southern Taiwan. Field sampling and chemical analysis of particulate matter and gaseous pollutants were conducted in Daliao and Tzouying in the Kaohsiung area, using a denuder-filter pack system during the period of 22 October to 3 November 2004. Sulfate, nitrate and ammonium were the major ionic species in the PM2.5, accounting for 46 and 39% of the PM2.5 for Daliao and Tzouying, respectively. Higher PM2.5, Cl?, NO3? and NH4+, HNO2 and NH3 concentrations were found at night in both stations, whereas higher HNO3 was found during the day. In general, higher PM2.5, HCl, NH3, SO2, Cl?, NO3?, SO42? and NH4+ concentrations were found in Daliao. The synoptic weather during the experiment was first influenced by Typhoon NOCK-TEN, which resulted in the pollutant concentrations decreasing by about two-thirds. After the tropical thunderstorm system passed, the ambient air quality returned to the previous condition in 12 to 24 h. When there was a strong subsidence accompanied by a high-pressure system, a more stable environment with lower wind speed and mixing height resulted in higher PM2.5, as well as HNO2, NH3, SO42?, Cl?, NO3?, NH4+ and K+ concentrations during the episode days. The rainfall is mainly a scavenger of air pollutants in this study, and the stable atmospheric system and the high emission loading are the major reasons for high air pollutant concentrations.  相似文献   

19.
气溶胶质量密度是气溶胶重要的参数,它影响着大气中复杂的化学反应,也与气溶胶的传输过程和空间分布息息相关.基于MERRA-2再分析资料提供的气溶胶柱质量密度数据,研究了我国塔里木盆地1980—2018年长时间序列的沙尘气溶胶柱质量密度的时空分布特征.结果表明,沙尘气溶胶和沙尘PM2.5气溶胶柱质量密度有很大的变化范围,平均值分别为0.33和0.086 g/m2,同时具有明显的年际、月和季节变化特征.沙尘气溶胶和沙尘PM2.5气溶胶柱质量密度的年平均值在0.24~0.41和0.06~0.11 g/m2范围内变化;春季最大,其平均值分别为0.47和0.12 g/m2,冬季最小,其平均值分别为0.13和0.04 g/m2;月平均值最大出现在5月,分别为0.57和0.14 g/m2,最小在1月,分别为0.1和0.03 g/m2.  相似文献   

20.
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300&ALS450型激光雷达和 GRIMM 180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包含“0424”特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5、PM1.0的平均质量浓度分别为202.3、57.4 μg/m3、16.7 μg/m3。在不同天气条件下,PM10、PM2.5、PM1.0质量浓度的变化有很好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3 μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7 μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多;通过对“0424”特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型;通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号