首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用韶关市1981—2010年40、80、160以及320cm的月平均地温资料,计算并分析年平均地温变化。结果表明:韶关市1981—2010年深层地温年际变化大体呈上升趋势,而且深层地温的逐月变化随着深度的增加变化幅度逐渐减小,而地温的高值和低值的出现时间也随着深度的增加而后延。利用Mann-Kendall检验分析突变,发现40、80、320cm地温均在1996年出现突变。通过计算分析各层地温与夏季降水和气温的相关系数,选取了相关显著的因子,利用逐步回归建立了夏季气温和降水预报方程。计算所得的2个方程F值均通过了95%的信度检验,历史回代拟合率相对理想。  相似文献   

2.
以新疆塔城基准站自动气象站2006年11月—2010年3月积雪深度≥0cm的451天为样本,对0cm地面温度、雪面(草面)温度、气温及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度、雪(草)面温度与气温的关系,结果显示:雪(草)面温度在积雪期,变化趋势与气温一致,受云量及日照时数影响明显,平均雪温低于平均气温;地温随雪深变化有20cm和50cm两个分界点,雪深≤20cm时,地温受雪深、气温影响较大,变化趋势与气温基本一致,地温高于气温,雪层较薄时,受云量和日照影响较明显。雪深超过20cm时,地温变幅趋向定值,地温变化仅受长时间温度变化影响,且不低于-5℃;雪深超过50cm时,地温趋于定值(-1℃)。  相似文献   

3.
曲静  王昱  张弘 《气象科技》2014,42(4):657-662
利用1961—2011年西安0~40cm浅层逐月平均地温、地面最高、最低温度和1981—2011年深层80cm、160cm和320cm逐月平均地温观测资料,采用气候倾向率、滑动t检验、功率谱等气候统计方法,研究了西安平均地温的变化趋势、变化周期、气候突变和异常年份等。结果表明:在全球气候变暖背景下,西安各层年、季平均地温除夏季各浅层呈降温趋势外其余均为升温趋势,升幅为0.11~0.56℃/10a,0~20cm各层及160cm平均地温升温率为春季最大,40cm、320cm为冬季最大,80cm为秋季最大,各层均为夏季最小。地面最高年平均温度呈略下降趋势,最低呈明显升高趋势。浅层0~40cm年平均地温存在显著的2.3年、3.6~4.6年的变化周期以及32年的长周期震荡。年平均地温在1993年或1994年发生了突变;浅层春季平均地温在20世纪90年代中后期发生了突变,夏季在20世纪70年代末或20世纪90年代中期发生了两次突变,秋冬季基本未出现突变;深层各季在20世纪90年代中期发生了突变。年平均地温除160cm未出现异常年份外,80cm在1993年出现异常偏低年,其余各层在21世纪00年代初中期出现异常偏高年;春季多偏高年份,夏季多偏低年份,冬季异常年份最多。地温和气温变化的相关性达到0.82以上,说明气温的变化是影响地温变化的主要因素。  相似文献   

4.
春季浅层地温的时空变化是影响农业生产的重要因素之一,本文采用统计方法,分析齐齐哈尔市1985-2014年春季(5月)浅层(0、10和20 cm)地温的时空变化特征。结果表明该地区浅层地温呈小幅上升趋势;各地间地温的差异随深度增加而逐渐增大,但自2010年起这种差异明显减小。空间上,浅层地温的分布大体上具有由西南向东北降低的趋势。2014年与1987年相比,0 cm和20 cm地温分布均呈现高温面积扩展、低温面积减小的趋势。地温与气温和降水相关分析的结果表明:影响浅层地温的主要因素是气温,降水对表层(0 cm)地温也具有较大影响。  相似文献   

5.
:基于乌鲁木齐1961-2008年地温和降水资料,使用一元线性回归、Mann-Kendall突变检验、相关等统计方法,分析了地温的时间变化特征及与夏季降水的关系。结果表明:浅层地温(0厘米和40厘米)的逐月变化与大陆气温一致,而80厘米和160厘米,则与海温一致,320厘米地温表现为准半年的变化特征。各层年均地温有较一致的年变化,1990年至今,均处在高值期。40厘米和80厘米的年均地温呈下降趋势,而160厘米和320厘米为上升趋势。各层地温在冬季,均呈显著的升温趋势。各层冬季地温均在2000后发生了由低到高的气候突变。相关分析发现,320厘米前一年12月的地温与次年夏季降水相关性较好,可达0.38。进一步的分析发现,前一年秋季8月和9月,160厘米与320厘米地温的梯度与降水有较好的正相关,相关系数分别为0.41和0.4,可以作为夏季降水长期预测的一个参考因子。  相似文献   

6.
草温、0cm地温、气温间变化规律分析   总被引:9,自引:0,他引:9  
利用2008年信阳、郑州、南阳、商丘4个国家基本(准)站草温、0 cm地温和气温资料,分析了不同季节(冬、夏)、不同天气条件下草温、0 cm地温、气温的变化关系,结果表明:冬季无积雪和夏季的晴天,草温变化的振幅最大,位相靠前,0 cm地温居中,气温变幅最小;冬季有积雪时,0 cm地温在0 ℃左右变动,草温和气温表现出一定的变化幅度.从全年月平均值变化来看,0 cm地温>草温>气温;逐月极端最高值,0 cm地温>草温>气温;逐月极端最低值,草温<0 cm地温<气温.用草温比用0 cm地温和气温能更好地判定霜的出现.  相似文献   

7.
利用MOD10A2遥感影像提取大渡河流域2010~2014年积雪覆盖数据,结合水文气象站点数据分析了大渡河流域积雪时空分布特征及气象因子-积雪面积-径流之间的关系。结果表明:年平均积雪面积最大的是康定,最小的是泸定。积雪在冬季最大,夏季积雪最少。积雪面积变化随月份起伏明显,积雪过程集中在10月到次年4月。降水和气温变化较一致,其峰值滞后于积雪面积峰值。积雪和气温、降水的相关性表明,积雪面积与气温、降水呈负相关,且气温与积雪面积相关性更大。径流的变化具有周期性,5月开始迅速增大,7月达到最大值。径流和积雪以及气象因子的相关性分析表明,径流与积雪面积呈负相关,与气温和降水都是正相关,且径流与降水相关性更大。   相似文献   

8.
为了更好地了解沙漠腹地浅层地温特征以及对气候的响应关系,利用塔中气象站1996—2015年日平均气温、浅层地温(0~20cm)以及总云量、低云量、日照时数、风速、沙尘日数等资料,分析沙漠腹地地温分布特征以及与气象因子的响应关系。结果表明:浅层地温在春、夏季热量向下传导,秋、冬季则表现为相反趋势,气温和地温(0~20cm)的月平均值分别为11.8、16.4、16.0、16.1、16.1℃和16.3℃;在0~10cm地温之间,变化幅度呈现7月份波动最大,在10~20cm地温之间,12月波动最大,9月份,地温随着深度的增加波动一直是最小的;夏季,地温不是影响气温的主要影响因子,在其他季节,气温与0cm地温相关性最明显;(4)冬季,风速是影响气温和地温的主要气象因子。  相似文献   

9.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0  
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   

10.
选取青藏高原东部地区1967~2010年61个测站的积雪数据,分析比较了整年和不同季节高原积雪的年代际变化特征及其与降雪和气温的关系,结果表明:除了秋季以外,高原东部积雪表现出“少雪-多雪-少雪“的显著年代际变化特征,80年代末发生的由少到多突变仅在冬季积雪中表现显著,20世纪末发生的由多到少突变在冬春两季积雪中均表现显著;降雪和气温的变化是影响高原东部积雪的重要因素,降雪变化的影响更加显著,尤其是秋季降雪;在冬春季降雪偏多时段,降雪的变化主导着积雪的变化;在冬春季降雪偏少时段,气温变化的影响增大,某些时段会超过降雪,甚至达到主导积雪变化的程度。   相似文献   

11.
王秀琴  卢新玉  王金风 《气象科技》2013,41(6):1068-1072
基于新疆昌吉州5个国家气象站2008—2010年积雪深度大于等于0 cm的实测地面温度与雪面温度,对0 cm地面温度(含最高、最低)、雪面温度(含最高、最低)及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度与雪面温度的关系,并以阜康市天池气象站2011年所有积雪日数据对关系模型作检验。结果显示:地面温度与雪面温度的关系有3个雪深分层:5 cm以下、6~40 cm和40 cm以上,积雪深度为0~5 cm时,地面温度与雪面温度差值很小,受雪深及天气条件影响明显,雪深6~40 cm,主要受雪深影响,雪深超过40 cm,地面温度趋于定值。  相似文献   

12.
The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the time taken to propagate downward to 320 cm can be up to 10 months.Besides the AT,the ST is also affected by memory effects-namely,its prior thermal conditions.At deeper depth(i.e.,320 cm),the effects of the AT from a particular season may be exceeded by the soil memory effects from the last season.At shallower layers(i.e.,<80 cm),the effects of the AT may be blocked by the snow cover,resulting in a poorly synchronous correlation between the AT and the ST.In northeastern China,this snow cover blockage mainly occurs in winter and then vanishes in the subsequent spring.Due to the thermal insulation effect of the snow cover,the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during the recent global warming hiatus period.These findings may be instructive for better understanding ST variations,as well as land?atmosphere interactions.  相似文献   

13.
STUDIES ON CLIMATE CHANGE IN CHINA IN RECENT 45 YEARS   总被引:6,自引:0,他引:6       下载免费PDF全文
Based on the data of monthly mean air temperature and precipitation from about 400 stationsin 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,totalcloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered daysand depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961—1995.the climate change and its characteristics in China in recent 45 years have been analyzedand studied comprehensively.This paper,as the first part of the work.has analyzed the climatechange and regularities of such meteorological elements as mean air temperature,maximum andminimum air temperatures,precipitation,relative humidity and sunshine duration.The possiblemechanism on climate change in China and the climate change and regularities of othermeteorological elements will be discussed in another paper as the second part.  相似文献   

14.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

15.
选取阿尔山气象站1981—2015年冷季(10月—次年4月)气象资料,利用滑动平均、线性倾向估计和Mann-Kendall等方法,对年最大积雪深度、积雪日数、气温和降水量进行分析。结果表明,阿尔山地区年最大积雪深度主要发生在1月至3月,其中2月份概率最大,达50%;34 a内最大积雪深度呈上升趋势(2.77 cm/10a),年平均增加0.98%,且年最大积雪深度在1998年发生了突变,即在1998年之前增长缓慢,在2000年以后上升趋势显著。积雪日数的统计分析表明,初始积雪日数和有效积雪日数呈现略微减少趋势,而稳定积雪日数有微弱的增加趋势;通常初始积雪日数比有效积雪日数大30天左右。年最大积雪深度与稳定积雪时期的降水量、积雪日数、日照时数有显著的相关性,相关系数分别为0.647、0.515、0.584,但与稳定积雪时期的气温没有明显的相关性。在全球变暖的大环境下,积雪深度随着降水量和日照时数的增加而增加,且积雪深度受降水量的影响大于日照时数的影响。  相似文献   

16.
青藏高原积雪日数的气温敏感度分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据青藏高原气象台站观测积雪日数和均一化气温数据,对高原1951—2004年积雪日数对气温的敏感度进行了量化分析。研究表明,无论是极值敏感度还是当前气候下的敏感度,空间上都呈现出高原四周积雪较中部对气温的敏感程度高的情况。各台站积雪日数对气温最敏感时的临界气温与海拔有着极好的反相关关系,而极值敏感度与海拔虽然也有一定的反相关,但相关程度远不如前者高。在当前气候状态下,有相当一部分台站的平均气温还未达到临界值,这些台站在秋、冬、春、夏季分别占总台站数的36%、39%、47%和11%。未来气候继续变暖背景下,这部分台站积雪日数对气温的敏感度会进一步加大,即积雪对气温的升高会更加敏感。  相似文献   

17.
黄土高原半干旱雨养区日光温室小气候分析   总被引:17,自引:0,他引:17       下载免费PDF全文
利用小气候观测系统对黄土高原半干旱雨养农业区日光温室各部位温湿度进行系统全面的监测分析,结果表明:秋栽黄瓜整个生育期,室内气温和地温呈现波动式降低,而相对湿度在采收初期以前呈波动式增加,但在普遍采收期以后波动下降,这3个因子都随高度而变。不同生育期室内气象要素的日变化趋势和波动基本相似,但变幅不同,一天中峰值出现的迟早略有差异。在垂直方向,温室内不同高度的气温和相对湿度明显不同且日变化较剧烈,在低层形成低温高湿的小环境,而高层形成高温低湿的小环境,但整个温室总体上始终处于高湿环境。不同层次土壤温度明显不同,10 cm地温在一天中变化最敏感,变幅最大;30 cm地温变幅较小,且最高温出现的时间比10 cm土层滞后2 h;50 cm地温在一天中几乎没有什么变化,与上层土壤比较,始终处于低温水平。在水平方向,气温和地温都表现为南高北低,湿度相反,但这种南北差异很小,可近似认为水平方向温湿度和地温分布比较均匀。  相似文献   

18.
近30年青藏高原年平均0cm地温的分布和变化特征   总被引:11,自引:2,他引:11  
建军  余锦华  达琼 《气象》2006,32(2):64-69
选取青藏高原40个测站1970~2002年各月平均0cm地温资料,通过EOF、二阶多项式函数和小波分析等方法,对青藏高原年平均0cm地温的时空分布特征进行了研究。结果表明,青藏高原年平均0cm地温EOF展开的第一特征向量反映了高原地温分布的一致性,而第二、三特征向量分别揭示了高原地温分布受到各种中、小尺度天气系统和海拔高度制约的事实。高原地温空间异常可分为4个气候区,即东北部、南部、主体和西部。高原地温各分区代表站的二阶多项式反映出近30年高原东北部地温呈降温趋势;南部呈增温趋势;高原主体和西部具有高一低一高的抛物线型变化趋势。高原地温各分区皆有3a和准7a的振荡周期。  相似文献   

19.
利用阿勒泰地区7个气象观测站1981-2013年积雪初、终日期、积雪期(积雪初、终日期间日数),以及同期平均气温、平均0厘米地面温度、降水量、日照时数和平均风速资料,分析了该区积雪的变化特征及其与五个气象因子的关系。结果表明:阿勒泰地区平均初日为11月3日,终日为4月2日,平均积雪期为152d;近33年阿勒泰地区积雪初日呈上升的趋势,而终日和积雪期是呈下降趋势;除了吉木乃站的积雪初日气候倾向率是负值外,其余各站均是正值的,积雪终日的气候倾向率各站均为负值,积雪期的气候倾向率除了吉木乃站外其余均是正值;各站在积雪期内与降水量呈显著的正相关,表明降水量越多积雪持续时间越长,而且七个站均通过了显著性检验,降水因子在五个因子的对各站积雪期的影响较大;阿勒泰地区的各站积雪期与积雪初、终日期间的风速、降水量、0厘米地温、日平均气温、日照时数五个因子的相关系数中有57%的通过信度0.05的显著性检验,还有20%的通过了信度0.001的显著性检验;  相似文献   

20.
基于天山山区1961-2013年60个气象站点实测气温、降水、相对湿度、日照时数和积雪深度等气候资料,结合时间序列分析、空间分析以及通径分析等方法,全面精确地获取了天山山区气候变化特征以及气候变化对积雪的通径影响。结果表明:天山山区气候变化显著,主要表现为整体增暖、局部变湿与黯化;气候变暖导致天山山区固态降水(降雪)保证率明显降低,尤其是低海拔区域。各气象要素对积雪不仅存在直接的单因素影响而且各气象要素之间还存在间接的相互交叉、相互联结的多因素影响。单因素影响通径分别为气温、降水和日照时数对积雪深度的3条直接影响通径;多因素影响通径分别为气温、降水和日照时数通过相互之间的内在关系对积雪深度产生的6条间接影响通径。最终结果表明气温是积雪变化的主要影响因素,其影响效应远远大于降水和日照时数的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号