首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

2.
The Chicxulub and Ries impact craters were excavated from layered continental terrains that were composed of carbonate-bearing sedimentary sequences and underlying crystalline silicate basement materials. The Chicxulub and Ries impact events were sufficiently large to produce complex peak-ring impact craters. The walls of transient craters and excavation cavities, with diameters of 12-16 km for the Ries and 90-100 km for Chicxulub, collapsed to form final crater diameters of ∼24 and ∼180 km, respectively. Debris from both the sedimentary and crystalline layers was ejected during crater formation, but the bulk of the melting occurred at depth, in the silicate basement. The volume of melt and proportion of melt among shock-metamorphosed debris was far larger at Chicxulub, producing a central melt sheet ∼3 km in depth. The central melt sheet was covered with melt-bearing polymict breccias and, at the Ries, similar breccias (crater suevites) filled the central cavity. Also at the Ries (and presumably at Chicxulub), large hill-size megablocks of crystalline basement material were deposited near the transient crater rim. Blocks and megablocks of sedimentary lithologies were ejected into the modification zone between the peak ring and final crater rim, while additional material was slumping inward during crater growth, and buried beneath a fallout deposit of melt-bearing polymict breccias. The melt and surviving clasts in the breccias are dominantly derived from the deeper, basement lithologies. At greater distances, however, the ejecta is dominated by near-surface sedimentary lithologies, large blocks of which landed with such high energy that they scoured and eroded the pre-existing surface. The excavation and ejecta pattern produced lithological and chemical variations with radial distance from the crater centers that evolve from basement components near the crater centers to sedimentary components far from the crater centers. In addition, carbonate (and anhydrite in the case of Chicxulub) was vaporized, producing environmentally active gases. The vaporized volume produced by the Ries impact event was too small to dramatically alter the evolution of life, but the vaporized volume produced by the Chicxulub impact event is probably a key factor in the Cretaceous-Tertiary boundary mass extinction event.  相似文献   

3.
The St. Lawrence rift system from the Laurentian craton core to the offshore St. Lawrence River system is a seismically active zone in which fault reactivation is believed to occur along late Proterozoic to early Paleozoic normal faults related to the opening of the Iapetus ocean. The rift-related faults fringe the contact between the Grenvillian basement to the NW and Cambrian–Ordovician rocks of the St. Lawrence Lowlands to the SE and occur also within the Grenvillian basement. The St. Lawrence rift system trends NE–SW and represents a SE-dipping half-graben that links the NW–SE-trending Ottawa–Bonnechère and Saguenay River grabens, both interpreted as Iapetan failed arms. Coastal sections of the St. Lawrence River that expose fault rocks related to the St. Lawrence rift system have been studied between Québec city and the Saguenay River. Brittle faults marking the St. Lawrence rift system consist of NE- and NW-trending structures that show mutual crosscutting relationships. Fault rocks consist of fault breccias, cataclasites and pseudotachylytes. Field relationships suggest that the various types of fault rocks are associated with the same tectonic event. High-resolution marine seismic reflection data acquired in the St. Lawrence River estuary, between Rimouski, the Saguenay River and Forestville, identify submarine topographic relief attributed to the St. Lawrence rift system. Northeast-trending seismic reflection profiles show a basement geometry that agrees with onshore structural features. Northwest-trending seismic profiles suggest that normal faults fringing the St. Lawrence River are associated with a major topographic depression in the estuary, the Laurentian Channel trough, with up to 700 m of basement relief. A two-way travel-time to bedrock map, based on seismic data from the St. Lawrence estuary, and comparison with the onshore rift segment suggest that the Laurentian Channel trough varies from a half-graben to a graben structure from SW to NE. It is speculated that natural gas occurrences within both the onshore and offshore sequences of unconsolidated Quaternary deposits are possibly related to degassing processes of basement rocks, and that hydrocarbons were drained upward by the rift faults.  相似文献   

4.
The Otway Basin in southeastern Australia formed on a triangular‐shaped area of extended continental lithosphere during two extensional episodes in Cretaceous to Miocene times. The extent of the offshore continental margin is highlighted by Seasat/Geosat satellite altimeter data. The crustal architecture and structural features across this southeast Australian margin have been interpreted from offshore‐onshore wide‐angle seismic profiling data along the Otway Continental Margin Transect extending from the onshore Lake Condah High, through the town of Portland, to the deep Southern Ocean. Along the Otway Continental Margin Transect, the onshore half‐graben geometry of Early Cretaceous deposition gives way offshore to a 5 km‐thick slope basin (P‐wave velocity 2.2–4.6 km/s) to at least 60 km from the shoreline. At 120 km from the nearest shore in a water depth of 4220 m, sonobuoy data indicate a 4–5 km sedimentary sequence overlying a 7 km thick basement above the Moho at 15 km depth. Major fault zones affect the thickness of basin sequences in the onshore area (Tartwaup Fault Zone and its southeast continuation) and at the seaward edge of the Mussel Platform (Mussel Fault). Upper crustal basement is interpreted to be attenuated and thinned Palaeozoic rocks of the Delamerian and Lachlan Orogens (intruded with Jurassic volcanics) that thin from 16 km onshore to about 3.5 km at 120 km from the nearest shore. Basement rocks comprise a 3 km section with velocity 5.5–5.7 km/s overlying a deeper basement unit with velocity 6.15–6.35 km/s. The Moho shallows from a depth of 30 km onshore to 15 km depth at 120 km from the nearest shore, and then to about 12 km in the deep ocean at the limits of the transect (water depth 5200 m). The continent‐ocean boundary is interpreted to be at a prominent topographic inflection point 170 km from shore at the bottom of the continental slope in 4800 m of water. P‐wave velocities in the lower crust are 6.4–6.8 km/s, overlying a thin transition zone to an upper mantle velocity of 8.05 km/s beneath the Moho. Outstandingly clear Moho reflections seen in deep‐marine profiling data at about 10.3 s two‐way time under the slope basin and continent‐ocean boundary place further strong controls on crustal thickness. There is no evidence of massive high velocity (>7 km/s) intrusives/underplate material in the lower crust nor any synrift or early post‐rift subaerial volcanics, indicating that the Otway continental margin can be considered a non‐volcanic margin, similar in many respects to some parts of the Atlantic Ocean margins e.g. the Nova Scotia ‐ Newfoundland margin off Canada and the Galicia Bank off the Iberian Peninsula. Using this analogue, the prominent gravity feature trending northwest‐southeast at the continent‐ocean boundary may indicate the presence of highly serpentinised mantle material beneath a thin crust, but this has yet to be tested by detailed work.  相似文献   

5.
The interpretation protocols for defining offshore rifted margin architecture normally include seismic‐reflection analysis supplemented by refraction and/or potential field modelling to help constrain sedimentary, basement and Moho geometries at depth and/or the presence of magmatic material. Interpretation of modern high‐resolution long‐offset reflection profiles shows that significant mismatches may arise between the structural observations made from these data and the common translation of density, magnetic or velocity values into specific rock types made by geophysical models. We illustrate this problem with three examples from the Mid‐Norwegian rifted system, and discuss the implications with respect to the geological interpretation.  相似文献   

6.
The Southern Granulite Terrain with exposed Archean lower crustal rocks is studied using various geophysical tools. The crustal structure derived from seismic reflection and refraction/wide-angle reflection studies is used to understand the tectonic evolution of the region. Deep seismic reflection section along the Kolattur–Palani segment shows an oppositely dipping reflection fabric near the Moyar–Bhavani shear zone, which is interpreted as a signature of collision between the Dharwar craton and another crustal block in the south. The thickened crust due to collision was delaminated during the orogenic collapse and modified the central part, covering the Cauvery Shear Zone system, located between the Moyar–Bhavani and Karur–Oddanchatram shear zones. The delaminated lower crust is altered by magmatic underplating as evidenced by the high velocity layer just above the Moho. The velocity model of the region indicates crustal thickening at the boundary of the Dharwar craton and Moyar–Bhavani shear zone and thinning further south. Back-scattered seismic wave field with negative moveout and the Moho-offset indicate the spatial location and strike-slip nature of the shear zones. Present study suggests that the late Archean collision and suturing of the Dharwar craton with the southern crustal block at the Moyar–Bhavani shear zone may be responsible for the evolution of late Archean granulites. Late Neoproterozoic rifting is observed along the paleo-fault zones. The seismic studies constrained by gravity, magnetic and magnetotelluric data suggest that the Moyar–Bhavani and Karur–Oddanchatram shear zones of the Cauvery Shear Zone system mark terrane boundaries/suture zones.  相似文献   

7.
The majority of the world's oil and gas deposits have been discovered by drilling in the vicinity of natural petroleum seeps, and to date the most successful geochemical prospecting methods still rely upon the surface detection of hydrocarbons. Gas chromatographic techniques are now commonly used in the analysis of hydrocarbon gases for prospecting both onshore (analysis of soils and rocks) and offshore (analysis of near-bottom waters and sediments). Detection of helium fluxes has been partially successful as a geochemical prospecting technique. Many indirect techniques such as the determination of isotope and metal-leaching anomalies in surface rocks and the measurement of radon fluxes have not been widely used.Onshore geochemical prospecting appears to have more problems associated with it than offshore prospecting due to the more complex migration mechanism of near-surface waters containing dissolved gases. No onshore prospecting studies have been published which thoroughly consider this factor and the success of onshore prospecting remains equivocal. In offshore prospecting “sniffers” have been used to detect hydrocarbon anomalies in near-bottom waters, and coring equipment has been used for the detection of hydrocarbons in near-surface sediments. Success is claimed using these techniques.Geochemical prospecting methods are complementary to the widely used geophysical methods. Geochemical methods can provide direct evidence for the presence of petroleum accumulations and are relatively cheap and rapid. Failures in prospecting to date are attributable to the simplistic manner in which data have been interpreted; insufficient attention has been paid to the hydrological and geological factors which modify the upward migration of indicator species to the surface. As oil and gas deposits become more difficult to locate, greater attention should be paid to geochemical prospecting techniques, especially as a regional exploration tool.  相似文献   

8.
In 1973 detailed seismic crustal studies were performed across the prominent fault zone between the Hercynian fold systems of the Rhenish Slate Mountains (western part of Rhenoherzynikum) and the Saar-Nahe trough. Reflection data show a zone of strongly dipping reflectors, separated from another area with nearly horizontal layering. Data from refraction stations confirm the picture of a fault zone cutting two old crustal blocks down to the Moho. A similar but smaller survey was performed in 1975 across the western Rhine graben fault near Landau. This fault is tensionsal and could not be observed with the same certainty and up to the same depth range as the former one. Apparently, its dip near the surface is smaller than anticipated and may even assume still smaller values at intermediate crustal depths. Moreover, high temperatures in this area tend to limit the maximum depth of the fault zone, in accordance with the concept of a direct relationship between the depths of seismicity along faults and the temperature—viscosity regime. The area between the two reflection surveys was studied by refraction observations, making use of the shots of the reflection work. In general, the reflection investigations are well able to reveal the geometry and the maximum depth of fault zones and show many structural details, while the supplementing refraction work determines the overall velocity depth relation and may follow important horizons.  相似文献   

9.
CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.  相似文献   

10.
The IODP‐ICDP Expedition 364 drilled into the Chicxulub crater, peering inside its well‐preserved peak ring. The borehole penetrated a sequence of post‐impact carbonates and a unit of suevites and clast‐poor impact melt rock at the top of the peak ring. Beneath this sequence, basement rocks cut by pre‐impact and impact dykes, with breccias and melt, were encountered at shallow depths. The basement rocks are fractured, shocked and uplifted, consistent with dynamic collapse, uplift and long‐distance transport of weakened material during collapse of the transient cavity and final crater formation.  相似文献   

11.
A. Yamaji  T. Sakai  K. Arai  Y. Okamura 《Tectonophysics》2003,369(1-2):103-120
Transpressional tectonics characterizes the SW Japan arc. However, we will show in this article that offshore seismic profiles and onshore mesoscale faults indicate that the eastern part of the forearc was subject to transtensional tectonics since ca. 2.0 Ma. Offshore normal faults imaged on the profiles run parallel to the Nankai Trough, and started activity at 1.0 Ma, but transtensional tectonics commenced the onshore area earlier. In order to understand the stress history in the forearc region, we collected fault-slip data from onshore mesoscale faults in Plio-Pleistocene sedimentary rocks in the Kakegawa area at the northeastern extension of the offshore normal faults. Most of the mesoscale faults are oblique-normal, indicating that the area was subject to transtensional tectonics. The faults suggest that the compressional tectonic regime was followed by the transtensional one at 2.0 Ma, in agreement with regional tectonostratigraphic data, which indicate that folding ceased at that time. Present compressional stress followed the transtensional tectonic regime sometime in the late Pleistocene. Transtensional or extensional tectonic zone shifted from the Kakegawa area to the offshore region.These observations indicate that the state of stress just behind the accretionary prism of the eastern Nankai subduction zone has been unstable in the last 2 million years, suggesting that the forearc wedge has been at critical state in that gravitational force and basal shear traction on the wedge have been balanced, but the forearc tectonics has been susceptible to small perturbations. Possible factors compatible with the observed stress history include the change of subduction direction of the plate at 1.0 Ma, and the rapid uplift of Central Japan thereafter.  相似文献   

12.
An on-/offshore seismic network consisting of 36 three-component stand-alone digital stations was deployed in the area of the Saronikos Gulf, in the vicinity of Athens (Greece), in the fall of 2001. In the present study, from an initial set of more than 1000 micro-earthquakes, 374 were selected and 6666 P- and S-wave arrivals were inverted, based on a 3D linearized tomography algorithm, in order to determine the 3D velocity structure of the region.

The resulting 3D velocity distribution, in agreement to the micro-seismicity distribution, reflects the Saronikos structure down to a depth of 12 km. So, the neotectonic basin of the Saronikos Gulf is divided in two parts by a central platform, which implies the existence of a NNE–SSW-trending rupture zone. This zone is probably the offshore extension of a large thrust belt dominating the adjacent onshore areas. Due to their different structure, the two basins are dominated by different velocity values in comparison to the central platform.

The western part is characterised by higher seismic activity than the eastern one. Furthermore, the western Saronikos Gulf is divided in a northern and a southern part by a well-defined rupture zone trending E–W. This seems to be the extension of the Corinthiakos Gulf fault zone. At the depth of 17 km, the velocity increases considerably and the crustal thickness is restricted down to 20 km. This ‘unexpected’ low thickness in the region of Saronikos Gulf seems to be the result of the extensional stress field, which dominates the region, as well as of the emergence of the mantle material along the volcanic arc, which clearly appears at the depth of 12 km. Yet the lack of deep events and, hence, the poor resolution below the depth of 17 km does not support a definite conclusion about the crust–mantle boundary in this region.  相似文献   


13.
Understanding the roles of Cenozoic strike-slip faults in SE Asia observed in outcrop onshore, with their offshore continuation has produced a variety of structural models (particularly pull-apart vs. oblique extension, escape tectonics vs. slab-pull-driven extension) to explain their relationships to sedimentary basins. Key problems with interpreting the offshore significance of major strike-slip faults are: (1) reconciling conflicting palaeomagnetic data, (2) discriminating extensional, and oblique-extensional fault geometries from strike-slip geometries on 2D seismic reflection data, and (3) estimating strike-slip displacements from seismic reflection data.Focus on basic strike-slip fault geometries such as restraining vs. releasing bends, and strongly splaying geometries approach the gulfs of Thailand and Tonkin, suggest major strike-slip faults probably do not extend far offshore Splays covering areas 10,000’s km2 in extent are characteristic of the southern portions of the Sagaing, Mae Ping, Three Pagodas and Ailao Shan-Red River faults, and are indicative of major faults dying out. The areas of the fault tips associated with faults of potentially 100 km+ displacement, scale appropriately with global examples of strike-slip faults on log–log displacement vs. tip area plots. The fault geometries in the Song Hong-Yinggehai Basin are inappropriate for a sinistral pull-apart geometry, and instead the southern fault strands of the Ailao Shan-Red River fault are interpreted to die out within the NW part of the Song Hong-Yinggehai Basin. Hence the fault zone does not transfer displacement onto the South China Seas spreading centre. The strike-slip faults are replaced by more extensional, oblique-extensional fault systems offshore to the south. The Sagaing Fault is also superimposed on an older Paleogene–Early Miocene oblique-extensional rift system. The Sagaing Fault geometry is complex, and one branch of the offshore fault zone transfers displacement onto the Pliocene-Recent Andaman spreading centre, and links with the West Andaman and related faults to form a very large pull-apart basin.  相似文献   

14.
杜建国 《地质与资源》1992,1(4):207-213
本文依据区内金矿床地质特征、矿化与火山作用、矿物流体包裹体的研究,阐明区内金矿成矿条件:火山岩基底变质岩是金矿"原始矿源岩";中生代岩浆部分熔融了"原始矿源岩"所形成的后生矿源岩"为金矿成矿提供了物质来源;毛坦厂组形成时期的火山活动及与之有关的火山(次火山)热液使金发生活化、迁移,并在有利部位富集成矿;火山构造及与火山活动有关的断裂构造控制了矿化部位.流体包裹体和稳定同位素研究结果表明,成矿热液主要来自天水,少量来自岩浆.成矿物质是在低fO2fS2,pH≈7的弱还原条件下沉淀的.  相似文献   

15.
About 400 km of new seismic reflection data has been acquired in the study region offshore of Alaçatı, Doğanbey, and Kuşadası, which enables investigation of the active crustal deformation in this region. The deformation onshore in western Turkey is dominated by crustal extension, and clear evidence of this process is also now available from this offshore area. However, in the onshore area adjacent to this study region evidence of active right-lateral strike-slip faulting has also previously been observed. This strike-slip faulting has previously been thought only to accommodate variations in extension between adjacent normal faults. However, in the offshore area there is considerable evidence of zones of deformation, some of which may link to the strike-slip faulting onshore, suggesting that strike-slip faulting may be of greater importance in this region than previously thought.  相似文献   

16.
《International Geology Review》2012,54(12):1145-1149
Evidence of “Upper Cretaceous” sediments above the melt rock/breccia assemblage at Chicxulub has been used to dispute the link between this large impact crater and the Cretaceous-Tertiary (KT) extinction horizon. We have evaluated core samples and well logs from the Petróleos Mexicanos (Pemex) Yucatan No. 6 exploratory well located ~50 km from ground zero. Despite previous reports to the contrary, the sequence of crystalline rocks and breccias located at depths exceeding 1000 m below sea level are characteristic of the upper lithological sequence observed at other large impact basins such as the 220 km Sudbury structure. Furthermore, the “Upper Cretaceous” sediments overlying the melt rocks and impact brecias at Chicxulub contain abundant glass shards and shocked minerals, demonstrating conclusively that these are reworked debris involved in the impact event, and not normal marine sediments. Core samples straddling the KT boundary indicate that the impact event created a basin several hundred meters deep.  相似文献   

17.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


18.
The distribution of epicenters of both historic earthquakes and recent seismic events in southeastern Ghana, compiled from local and teleseismic networks, show strong correlation with the Pan-African structures onshore and indicate an alignment with disruptions on seismic sections offshore. The seismic reflection sections reveal basement structures of the external zone of the Pan-African Dahomeyide orogen and these structures can be traced to offsets of shelf strata and seabottom reflectors, providing direct evidence, for the first time, for neotectonic activity that may be responsible for seismicity in the area. The deep structure of the external zone consists of moderately-dipping reflectors inferred to represent high-strain zones in the variably deformed margin of the West African craton. Taken together, the available data suggest that active tectonics in this intraplate environment may involve inversion of the Pan-African thrust structures but that this activity is apparently not related to reactivation of the nearby Romanche Fracture Zone.  相似文献   

19.
The distribution of epicenters of both historic earthquakes and recent seismic events in southeastern Ghana, compiled from local and teleseismic networks, show strong correlation with the Pan-African structures onshore and indicate an alignment with disruptions on seismic sections offshore. The seismic reflection sections reveal basement structures of the external zone of the Pan-African Dahomeyide orogen and these structures can be traced to offsets of shelf strata and seabottom reflectors, providing direct evidence, for the first time, for neotectonic activity that may be responsible for seismicity in the area. The deep structure of the external zone consists of moderately-dipping reflectors inferred to represent high-strain zones in the variably deformed margin of the West African craton. Taken together, the available data suggest that active tectonics in this intraplate environment may involve inversion of the Pan-African thrust structures but that this activity is apparently not related to reactivation of the nearby Romanche Fracture Zone.  相似文献   

20.
白银矿田折腰山大型古火山及其在成矿作用中的地位   总被引:1,自引:0,他引:1  
古火山地质学和矿床学研究表明,白银矿田折腰山Cu-Zn矿床地段,是一个火山岩岩相发育齐全(包括喷发-爆发相、喷发-溢流相、溢流相、火山颈相、次火山侵入相、火山侵出相以及喷发-沉积相)、空间展布有序、相序关系清楚的大型古火山口。赋存在这一大型古火山口构造部位的折腰山矿床位于古火山口中心位置,主要与一套粗火山碎屑署紧密伴生,不受单一岩性控制。矿床具典型的垂直分带和水平分带,矿体主体定位于古火山喷口内的通道构造中,局部形成于喷口以上海底近喷口处,属典型的喷口内和喷口过渡类型,简称火口型矿床.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号