首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The mobilization of K, rare earth elements (REE), Th, and U from Martian surface material upon contact with acidic solutions probably occurred extensively on Mars about 4 to 3.5 Ga ago and seems to have occurred locally in more recent times. We have studied the dissolution of these elements by leaching the basaltic shergottite Zagami and the terrestrial basalt BE‐N at constant pH values ranging from 5 to 1 in the absence and presence of added salts. Potassium is nearly immobile in Zagami and mobilized readily from BE‐N. The REE reside mostly in calcium phosphates and dissolve readily, with those in whitlockite of Zagami reacting slightly better than those in apatite of BE‐N. Thorium and U also reside mostly in calcium phosphates. Both dissolve similarly for both basalts and less readily than the REE. The experiments indicate the extent of the mobilization of K, REE, Th, and U, when acidic water leached the surface of Mars. Potassium was released slowly and in a small relative amount. The REE, and particularly the LREE, became mobile readily and were possibly distributed over large areas before immobilization. Thorium and U dissolved more slowly than the REE and were distributed less widely.  相似文献   

2.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   

3.
Six fragments of the Barwise meteorite were analyzed for REE and eleven other elements (Al, Ca, Mg, Mn, Na, K, Cr, Fe, Co, Ni and Ba). In addition, two fragments were analyzed for Si and Mg. The chondrite-normalized REE patterns of six fragments studied show interesting systematic variations. Three fragments with relatively high La abundances show a negative Ce anomaly. Since the meteorite in question is a find, it could be suspected that the observed REE fractionations are due to terrestrial contamination. To examine this point, a soil sample from the find site was also analyzed for REE and major chemical elements. It is considered that several facts, especially, the relationships between La and SiO2 and between SiO2 and MgO, suggest the pre-terrestrial fractionation rather than the terrestrial contamination. Unexpectedly, it is shown that the REE fractionation observed in the investigated fragments correlates with the metal-silicate and the Fe-Co-Ni fractionations. In this connection, large metal grains were investigated for Fe, Co and Ni contents. A suggestion is presented that this chondrite was formed through the melting of the surface of a planetesimal and the subsequent collision, although the possibility of terrestrial contamination might not be ruled out.  相似文献   

4.
The abundances of 27 elements are reported for the Murchison meteorite. Nine of these elements (Al, Ca, Fe, Mn, Na, K, Cr, Co, and Sc) have been determined previously for different Murchison specimens. Abundances for 18 elements (In, Cd, V, Y, and REE) are new data for this meteorite. The chemical composition is similar to the type II carbonaceous chondrites, particularly on the basis of REE, Mn, and In abundances.  相似文献   

5.
Major, minor and trace element abundances have been determined by instrumental neutron activation analysis (INAA) in whole rock and plagioclase separates of Serra de Magé (SdM). The whole rock contains 52% normative plagioclase and its chondritic normalized REE abundance pattern shows a large Eu anomaly, dominated by the plagioclase REE distribution, and nearly unfractionated La-Sm and Sm-Lu abundances. The plagioclase separates contained ~ 6% pyroxenes and exhibited a typical plagioclase REE distribution. The REE abundances in the derivative equilibrium magmas from which SdM and Moore County (MC) plagioclases crystallized have been estimated from the plagioclase data and the plagioclase mineral/liquid partition coefficients. The REE distributions in possibly earlier parental magmas were calculated by assuming that various degrees of plagioclase and pigeonite (plagioclase/pigeonite = 1) fractional crystallization had been operative prior to the crystallization of SdM and MC. The calculated La/Sm and Sm/Yb ratios for the earlier magmas are essentially the same as the equilibrium magmas over a wide range (10–95%) of the assumed fractional crystallization. Considering the REE distributions and the Fe/Fe+Mg ratios, calculation shows that there is no simple genetic relationship between MC and SdM via fractional crystallization processes. A hypothesis for the derivation of these cumulate eucrites in the plutonic environment from residual diogenitic liquid, which was produced by the extensive partial melting of an eucritic source material followed by the crystallization of diogenite, also fails to account for the fractionated REE patterns calculated for the equilibrium and the possible parental magmas for either SdM or MC. Equilibrium non-modal partial melting calculations indicate that SdM and MC could be genetically related by a factor ~ 6 difference in the degrees of partial melting from a similar source material. However, this common source material which should contain > 30% high-Ca clinopyroxene and has a chondritic normalized La/Yb ~ 3, is different than that proposed for the non-cumulate eucrites.  相似文献   

6.
Rare earth elements (REE) and uranium were studied for their distributions in various component phases of four ordinary chondrites, Kesen (H4), Richardton (H5), Bruderheim (L6), and Saint Séverin (LL6). A selective dissolution method was applied for the phase fractionation. The REE were analysed by neutron activation analysis, and U was determined by neutron-induced fission tracks. The present study revealed that both REE and U are highly enriched in the Ca-phosphate minerals with different enrichment factors, implying chemical fractionation between them. The phosphates seem to be responsible for more than 80% of the light REE in all chondrites. On the other hand, only 20–40% of the total U resides in the Ca-phosphates. This difference in enrichments might have been caused through the levels of metamorphic activity on the meteoritic parent bodies.  相似文献   

7.
We have measured excesses of Pd, Rh, Ru, REE, Co, Sr, and Y in a peat column from the Northern peat bog of the 1908 Tunguska explosion site. Earlier, in this peat column the presence of an Ir anomaly at the event layers (30- depth) has been found (Planet Space Sci. 48 (1998) 179). In these layers, Pd, Rh, Ru, Co, Sr, and Y show pronounced anomalies of a factor 4-7 higher than the background value. In the event layers there are also good correlations between the siderophile platinum group elements (Pd, Rh, Ru) and Co, indicators of cosmic material, which imply they might have the same source, i.e. the Tunguska explosive body. The patterns of CI-chondrite-normalized REE in the event layers are much flatter than those in normal peat layers and different from those in the nearby traps. Furthermore, in these layers the patterns of CI-chondrite-normalized PGEs and the element ratios (e.g. C/Pd, C/Rh, and between some siderophile elements) give evidence that the Tunguska explosive body was more likely a comet, although we cannot exclude the possibility that the impactor could be a carbonaceous asteroid. We have estimated the total mass of a solid component of the explosive body up to 103-106 tons.  相似文献   

8.
We have derived the abundances of the rare-earth elements (REEs) Ce, Pr, Nd, and Eu in the atmospheres of 26 magnetic peculiar (Ap) stars in the range of effective temperatures 7000–10 000 K from spectra with resolutions R = 48 000 and 80 000 and investigated the dependence of the CePrNdEu anomalies (the difference in the element abundances determined separately from lines of the first and second ionization stages) on the effective temperature. The REE anomaly is shown to decrease with increasing effective temperature virtually to the point of disappearance for all of the investigated elements, except Eu. For the best-studied element Nd the Nd anomaly has also been found to decrease with increasing magnetic field strength for cool stars. For hot stars there is no Nd anomaly in a wide range of magnetic field strengths. Since the presence of anomalies in cool Ap stars is associated with the REE concentration in the upper atmospheric layers, the lower boundary of the REE layer apparently sinks into deeper layers with increasing effective temperature and magnetic field, causing the anomalies to disappear. We have detected an anticorrelation between the abundances of iron-peak elements and rare-earth elements, which serves as additional evidence for different stratification of these elements in the atmospheres of Ap stars.  相似文献   

9.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   

10.
Abstract— The enstatite achondrite meteorites (aubrites) are ultramafic assemblages with highly variable bulk rare earth element (REE) compositions. An enrichment of REE in a dark clast from the Khor Temiki aubrite led Wolf et al. (1983) to suggest that such dark clasts could be the basaltic (i.e., enstatite-plagioclase) complements to the ultramafic aubrites, with the relatively high REE contents resulting from the presence of plagioclase, which is a common carrier of the REEs. We have studied several dark clasts from the Khor Temiki aubrite and find no evidence for a basaltic character for such material. The microscopic character of the dark clasts is not significantly different from the main portions of Khor Temiki and consists either of highly brecciated material, containing a fine-grained matrix, or of enstatite grains with abundant inclusions. We suggest that the dark clasts are shock-darkened, heterogeneous Khor Temiki material that, by chance, contained variable trace contents of oldhamite (CaS), which has been shown to be a major carrier of REE in aubrites. We find that the REE contents of the clasts range from 0.1 to ~20× CI. Most have negative Eu anomalies, but one has a small positive anomaly. Extensive searches have failed to identify basaltic material in Khor Temiki and other aubrites. The absence of basaltic material is consistent with, but does not prove, the model of Wilson and Keil (1991). They calculate that, on an asteroidal parent body < ~100 km in radius, a volatile-rich basaltic partial melt erupted with a velocity greater than the escape velocity of the asteroid and, thus, was lost into space ~ 4.55 Ga ago.  相似文献   

11.
We calculated equilibrium chemical composition of a mixture of meteoritic vapor and air during fireball events, i.e. during penetration of large meteoroids into terrestrial atmosphere. Different types of fireballs were considered, and calculations were performed for wide ranges of temperatures and pressures. Chemical composition at the quenching point was estimated by comparison of hydrodynamic and chemical reaction time scales. For the typical fireball temperatures of 4000-5000 K, most elements are expected to be in the form of atoms and ions. Notable exceptions are Si and C, which are expected to be mainly in the form of SiO and CO. Other molecules abundant at these temperatures are N2 and NO. Metal monoxides are most abundant at 2000-2500 K and are formed during the cooling phase. Conditions for formation of other molecules such as , CN, C2 and OH were also considered. The composition of freshly ablated meteoroid material was studied using the MAGMA code.  相似文献   

12.
Abstract— We have carried out a detailed petrographic, mineralogical, and trace element study of Northwest Africa (NWA) 011. This meteorite bears many similarities to the eucrites it was initially identified with, although oxygen isotopic compositions rule out a genetic relationship. Like many eucrites, NWA 011 crystallized from a source with approximately chondritic proportions of REE, although a slightly LREE‐enriched bulk composition with a small positive Eu anomaly, as well as highly fractionated Fe/Mg ratios and depleted Sc abundances (Korotchantseva et al. 2003), suggest that the NWA 011 source experienced some pyroxene and/or olivine fractionation. Thermal metamorphism resulted in homogenization of REE abundances within grains, but NWA 011 did not experience the intergrain REE redistribution seen in some highly metamorphosed eucrites. Despite a similarity in oxygen isotopic compositions, NWA 011 does not represent a basaltic partial melt from the acapulcoite/lodranite parent body. The material from which NWA 011 originated may have been like some CH or CB chondrites, members of the CR chondrite clan, which are all related through oxygen isotopic compositions. The NWA 011 parent body is probably of asteroidal origin, possibly the basaltic asteroid 1459 Magnya.  相似文献   

13.
We performed a LA-ICP-MS study of refractory lithophile trace elements in 32 individual objects selected from a single section of the reduced CV3 chondrite Leoville. Ingredients sampled include ferromagnesian type I and II chondrules, Al-rich chondrules (ARCs), calcium-aluminum-rich inclusions (CAIs), a single amoeboid olivine aggregate (AOA), and matrix. The majority of rare earth element (REE) signatures identified are either of the category “group II” or they are relatively flat, i.e., more or less unfractionated. Data derived for bulk Leoville exhibit characteristics of the group II pattern. The bulk REE inventory is essentially governed by those of CAIs (group II), ARCs (flat or group II), type I chondrules (about 90% flat, 10% group II), and matrix (group II). Leoville matrix also shows a superimposed positive Eu anomaly. The excess in Eu is possibly due to terrestrial weathering. The group II pattern, however, testifies to volatility-controlled fractional condensation from a residual gas of solar composition at still relatively high temperature. In principle, this signature (group II) is omnipresent in all types of constituents, suggesting that the original REE carrier of all components was CAI-like dust. In addition, single-element anomalies occasionally superimposing the group II signature reveal specific changes in redox conditions. We also determined the bulk chemical composition of all objects studied. For Mg/Si, Mg/Fe, and Al/Ca, Leoville's main ingredients—type I chondrules and matrix—display a complementary relationship. Both components probably formed successively in the same source region.  相似文献   

14.
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow. At least two and possible three parent magmas can be identified from the samples of the quartz normative group on the basis of their concentration ratios of Sm to Eu. Within each group, the compositions of the samples appear to be related by crystallization of olivine or pyroxene. Significant variations of the ratio of concentration of Sm to Eu cannot be produced without plagioclase-liquid equilibrium. The source material of mare basalt may be depleted in Eu. Alternatively, the magmas may have assimilated a small volume of material similar to KREEP.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

15.
Abstract— Four exposures of Chicxulub impact ejecta along the Mexico‐Belize border have been sampled and analyzed for major and trace element abundances. The ejecta deposits consist of a lower spheroid bed, containing clay and dolomite spheroids, and an upper diamictite bed with boulders and clasts of limestone and dolomite. The matrix of both beds is composed of clay and micritic dolomite. The rare earth element (REE) compositions in the matrix of both units show strong similarities in concentrations and pattern. Furthermore, the Zr/TiO2 scatter plot shows a linear correlation indicating one source. These results indicate that the basal spheroid bed has the same source and was generated during the same event as the overlying diamictite bed, which lends support to a single‐impact scenario for the Albion Formation ejecta deposits. The elevated concentrations of non‐meteoritic elements such as Sb, As, U, and Zn in the matrix of the lower spheroid bed are regarded to have been derived from the sedimentary target rocks at the Chicxulub impact site. The positive Eu and Ce anomalies in clay concretion and in the matrix of the lower part of the spheroid bed in Albion Island quarry is probably related to processes involved in the impact, such as high temperature and oxidizing conditions. Analogous trace element anomalies have been reported from the distal Cretaceous‐Paleogene (K/T) boundary clay layer at different sites. Thus, the trace element signals, reported herein, are regarded to support a genetic link between the Chicxulub impact, the ejecta deposits along the Mexico‐Belize border, and the global K/T boundary layer.  相似文献   

16.
Abstract— Inductively coupled plasma mass spectrometry (ICP-MS) was successfully applied to bulk samples of Allende, Jilin, Modoc, Saint-Séverin and Atlanta for the determination of rare earth elements (REE) (Y and 14 lanthanoids), Th and U. The results of ICP-MS showed good agreement with recommended values, and their reproducibilities were high enough to discuss the detailed abundances of lanthanoids and actinoids in chondritic meteorites. For the Allende reference sample issued by the Smithsonian Institution, a positive anomaly of Tm, a fractionation between light REE and heavy REE and a high Th/U ratio were observed in the CI-normalized abundances of REE, Th and U. These features are common for group II inclusions in Allende, suggesting that the abundances of refractory lithophiles in Allende are somewhat influenced by those in a specific constituent. For the other chondritic meteorites, a zigzag alteration was commonly observed in the heavy-REE region of their CI-normalized abundance patterns. It is suggested that such a zigzag pattern is attributable to erratically high abundances of monoisotopic REE (Tb, Ho and Tm) in the CI values. Abundances of REE, Th and U in the bulk samples are also discussed separately in detail.  相似文献   

17.
Element composition of dust from a shallow Dunde ice core, Northern China   总被引:1,自引:0,他引:1  
The Dunde ice cap (38°06'N, 96°24'E, with a summit of 5325 m) is situated at the centre of the northern Chinese deserts and receives dust from these regions. Here, we present the trace and rare earth element (REE) compositions of dust extracted from a shallow ice core from the Dunde ice cap, which provide a framework to trace the source of Dunde dust. Trace and REE parameters of Dunde dust show characteristics of a typical eolian deposit, with an average La/Th ratio of 2.6, a Th/U ratio of 3.7, and a strong negative Eu anomaly (0.61). The dirty layers in the ice core section have the same element characteristics as in the clear layers, indicating that the dust in Dunde is well-mixed and has a stable composition. Trace element and REE ratio plots show that Dunde dust has a similar composition to the finer fraction materials in the Taklimakan desert, suggesting that the Tarim Basin might be an important source for Dunde dust under the present circulation, but not favoring a material contribution from Badain Jaran. Our results reveal distinct differences in composition between Dunde dust and Chinese loess materials, which suggests that they have different sources.  相似文献   

18.
R. Helled  P. Bodenheimer 《Icarus》2010,207(2):503-508
The final composition of giant planets formed as a result of gravitational instability in the disk gas depends on their ability to capture solid material (planetesimals) during their ‘pre-collapse’ stage, when they are extended and cold, and contracting quasi-statically. The duration of the pre-collapse stage is inversely proportional roughly to the square of the planetary mass, so massive protoplanets have shorter pre-collapse timescales and therefore limited opportunity for planetesimal capture. The available accretion time for protoplanets with masses of 3, 5, 7, and 10 Jupiter masses is found to be and 5.67×103 years, respectively. The total mass that can be captured by the protoplanets depends on the planetary mass, planetesimal size, the radial distance of the protoplanet from the parent star, and the local solid surface density. We consider three radial distances, 24, 38, and 68 AU, similar to the radial distances of the planets in the system HR 8799, and estimate the mass of heavy elements that can be accreted. We find that for the planetary masses usually adopted for the HR 8799 system, the amount of heavy elements accreted by the planets is small, leaving them with nearly stellar compositions.  相似文献   

19.
Abstract— Polymict ureilites contain various mineral and lithic clasts not observed in monomict ureilites, including plagioclase, enstatite, feldspathic melt clasts and dark inclusions. This paper investigates the microdistributions and petrogenetic implications of rare earth elements (REEs) in three polymict ureilites (Elephant Moraine (EET) 83309, EET 87720 and North Haig), focusing particularly on the mineral and lithic clasts not found in monomict ureilites. As in monomict ureilites, olivine and pyroxene are the major heavy (H)REE carriers in polymict ureilites. They have light (L)REE‐depleted patterns with little variation in REE abundances, despite large differences in major element compositions. The textural and REE characteristics of feldspathic melt clasts in the three polymict ureilites indicate that they are most likely shocked melt that sampled the basaltic components associated with ureilites on their parent body. Simple REE modeling shows that the most common melt clasts in polymict ureilites can be produced by 20–30% partial melting of chondritic material, leaving behind a ureilitic residue. The plagioclase clasts, as well as some of the high‐Ca pyroxene grains, probably represent plagioclase‐pyroxene rock types on the ureilite parent body. However, the variety of REE patterns in both plagioclase and melt clasts cannot be the result of a single igneous differentiation event. Multiple processes, probably including shock melting and different sources, are required to account for all the REE characteristics observed in lithic and mineral clasts. The C‐rich matrix in polymict ureilites is LREE‐enriched, like that in monomict ureilites. The occurrence of Ce anomalies in C‐rich matrix, dark inclusions and the presence of the hydration product, iddingsite, imply significant terrestrial weathering. A search for 26Mg excesses, from the radioactive decay of 26Al, in the polymict ureilite EET 83309 was negative.  相似文献   

20.
Ten Sphagnum fuscum peat samples collected from different depths of a core including the layer affected by the 1908 Tunguska explosion in the Tunguska area of Central Siberia, Russia, were analyzed by ICP-MS to determine the concentrations of Pd, Rh, Ru, Co, REE, Y, Sr, and Sc. The analytical results indicate that the Pd and Rh concentrations in the event- and lower layers were 14.0–19.9, and 1.23–1.56 ppb, respectively, about 3–9 times and 3 times higher than the background values in the normal layers. In addition, the patterns of CI-chondrite-normalized REE in the event layers were much flatter than in the normal layers, and differed from those in the nearby traps. Hence, it can be inferred from the characteristics of the elemental geochemistry that the explosion was probably associated with extraterrestrial material, and which, most probably, was a small comet core the dust fraction of which was chemically similar to carbonaceous chondrites (CI). In terms of the Pd and REE excess fluxes in the explosion area, it can be estimated that the celestial body that exploded over Tunguska in 1908 weighed more than 106 t, corresponding to a radius of >60 m. If the celestial body was a comet, then its total mass was more than 2×107 t, and it had >160 m radius, and released an energy of >107 t TNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号