首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 738 毫秒
1.
本文采用数值分析的方法探讨Toeplitz矩阵延拓成ω循环矩阵时特征值的逼近程度.对于对称共轭型Toeplitz矩阵,采用ω=±i时对应的循环矩阵特征值的逼近程度较好;对于其它Toeplitz矩阵,采用共轭转置将其转化为对称共轭型矩阵后,才有利于特征值的逼近.可将本文方法广泛应用于地球物理中的数值计算(如位场计算、信号处理中的反褶积、地震资料的偏移处理等).  相似文献   

2.
位场向下延拓的波数域广义逆算法   总被引:4,自引:5,他引:4       下载免费PDF全文
位场向下延拓是位场数据处理和反演中的重要运算,但是它的不稳定性影响了它在许多处理和反演方法技术中的应用.本文通过把位场向下延拓视为向上延拓的反问题,得到向下延拓的褶积型线性积分方程,再利用Fourier变换矩阵的正交对称特性,并结合矩阵的奇异值分解和广义逆原理,提出了一种稳定的不需要进行求逆运算的位场向下延拓广义逆方法——波数域广义逆算法,解决了位场大深度向下延拓的不稳定性问题.把这种方法用于三维理论模型数据和实际磁场数据的向下延拓获得了理想的结果.  相似文献   

3.
地磁导航作为一种新的无源导航方式,具有重要的国防意义.构建空间地磁数据库是实现地磁导航的基础,位场延拓是解决地磁数据库构建的有效方法.积分-迭代法是一种解决位场大深度向下延拓的实用方法.本文着重对积分-迭代法的收敛性进行了分析,从数学角度证明积分-迭代法能够收敛到直接下延法理论解.同时对积分-迭代法的抗干扰性进行了初步分析,当观测数据含有噪声时,积分-迭代过程中使得噪声得到累加,影响延拓数据的精度.本文利用正则化方法和递增型维纳滤波方法,提出了波数域位场向下延拓新算法.模型检验表明,新算法稳定、抗干扰能力强、计算速度快.  相似文献   

4.
Toeplitz方程组的近似计算   总被引:2,自引:0,他引:2  
从通常所使用的求解Toeplitx方程组的Fourier变换方法出发,结合预条件共乾梯度法(Preconditioned Conjugate Gradient Method,记为PCGM),在对Toeplitz矩阵系统中的系数矩阵作ω循环延拓后再对其进行求解。理论和实际数值计算表明,该方法化于传统的采用简单循环的普通Fourier变换方法,所得结果具有较好的精度。  相似文献   

5.
利用数值方法解Lippermann-Schwinger(L-S)方程的主要困难在于系数矩阵存储和线性方程组求解.这主要是因为L-S方程的积分部分是一个空间褶积,在离散后将导致一个满秩矩阵,进而形成一个大型或超大型代数方程组.因此,在利用L-S解决地震波散射问题时,一般是利用散射级数法而非数值方法.然而,散射级数法的计算精度和收敛性强烈地依赖于速度扰动的强度,而克服这种依赖性的一个可能的途径就是对现有的数值方法进行改进或是建立新的数值求解方案.在这种思想指导下,首先对L-S方程进行改写,得到一个与原L-S方程等价的积分方程(等价L-S方程).然后,对等价L-S方程进行逐点归一化处理,并利用Nystr?m法对经归一化处理的等价L-S方程(归一化等价L-S方程)进行离散,并用FFT计算空间褶积.之所以这样选择是由于归一化等价L-S方程经Nystr?m法离散生成的系数阵为一个Toeplitz阵,可利用其Toeplitz性质降低存储空间;而FFT可以将矩矢空间褶积转化为乘积,且积分核部分只要计算一次即可.进一步,为节约正演计算时间,设计了进程级和线程级相结合的MPI+OpenMP并行模式.数值试验表明,与传统的积分方程数值算法相比,利用等价L-S方程、Nystr?m离散和FFT快速褶积的计算方案可极大地降低存储需求,进而在保证精度的同时提高计算效率.  相似文献   

6.
大步长波场深度延拓的理论   总被引:19,自引:4,他引:19       下载免费PDF全文
波场延拓是地震偏移成像的基础. 快速进行目标区波场延拓对石油勘探中急需发展的深部地震勘探和无组合海量地震数据的成像有重要意义. 在目标区成像中,目前已有的波场延拓方法,包括基于走时计算的Dix方法和射线追踪方法,以及基于小步长波场递推的方法,在适应复杂介质、计算精度和计算效率的某一方面还不能完全满足实际需要. 本文提出一种基于“算子相位”李代数积分的快速计算延拓算子的方法,称为大步长波场延拓方法. 在该方法中,指向目标区的波场延拓算子象征的复相位被表示成波数的线性组合. 线性组合的系数是层速度函数及其导数的深度积分,计算和存储较为方便. 波场延拓算子通过相移算子加校正的方法,利用快速Fourier变换在空间域和波数域予以实现. 利用动力学等价关系导出了便于计算的表达式. 本文比较了算子主象征函数用一步法展开和用两步法展开的精度,从而说明大步长方法的精度要高于递推方法. 在横向和纵向线性变化介质中,将大步长方法的脉冲响应与递推法做了比较,说明大步长延拓算子的走时精度主要取决于相移因子中的横向变速校正项;且在各种近似下,大步长算子发生的频散都非常小.  相似文献   

7.
位场延拓的积分-迭代法   总被引:22,自引:14,他引:22       下载免费PDF全文
徐世浙 《地球物理学报》2006,49(4):1176-1182
本文介绍一种新的位场延拓方法——积分-迭代法.将起伏面上的实测位场值,垂直投影至起伏面下部的一个水平面上,作为该水平面上的位场初始值.根据该水平面上的初始值,用积分方法计算起伏面上的位场值.用起伏面上的实测值与计算值的差值,对水平面上的位场值进行校正.如此反复迭代,直至起伏面上的实测值与计算值的差值小到可以忽略.有了水平面上的位场值后,就可以用积分的方法或其他方法计算水平面以上的任意曲面或水平面的位场值.该方法原理简单,不用解线性代数方程组,有较高的计算速度.它特别适用于位场向下延拓,有良好的延拓效果.本文还介绍了积分迭代法的应用实例.  相似文献   

8.
Lanczos方法是求解对称不定线性方程组的有效方法之一,本文利用Lanczos算法求解位场的向下延拓的方程组,而后利用数值计算检验该算法,发现其延拓结果的均方误差与拟合数据的平均残差范数并非单调递减,并且迭代次数较多的结果是一个不可预测、不确定、随机性的输出.为获稳定近似解,采用Lanczos算法求解与位场向下延拓方程组等价的法方程组,实现了位场向下延拓的法方程Lanczos方法,而后再进行数值计算检验,并将本文提出的位场向下延拓方法与Lanczos方法进行比较,结果表明,位场向下延拓的法方程Lanczos方法是一种抑制噪声能力较强,下延稳定的下延方法,且延拓结果具有均方误差与拟合数据的平均残差范数单调递减的良好特性.  相似文献   

9.
为提高频率域弹性波动方程数值求解的计算效率,本文引入近似解析离散化(NAD)方法将其进行数值离散并得到大型线性代数方程组.在详细分析了相应系数矩阵的稀疏分块结构与数学性质之后,本文提出采用不精确旋转分块三角预处理子加速Krylov子空间迭代方法来快速求解该线性方程组,并利用数值试验证实这种方法在弹性波场模拟方面的数值效率.通过与另外两种经典数值方法(常规有限差分方法和交错网格有限差分方法)对多种介质模型进行波场模拟、数值频散分析以及与解析解的波形对比,NAD方法显示了其在压制数值频散和提高计算效率方面的优势以及对复杂介质模型弹性波场数值模拟的有效性.  相似文献   

10.
快速高精度的频率空间域声波数值模拟方法研究   总被引:4,自引:3,他引:1  
频率空间域地震波正演优势明显:无累计误差;多炮反演时,只需几个频率就能得到比拟时间域全带宽反演的结果;容易实现时间域难以精确实现的吸收衰减数值模拟.频率域波动方程被离散化而形成稀疏、非对称、不定、复系数、大规模的系数矩阵,需要求解大规模的线性方程组,最大计算瓶颈是需要海量的计算机内存、导致计算量庞大.采用嵌套剖分法存储...  相似文献   

11.
位场向下延拓的最小曲率方法   总被引:3,自引:2,他引:1       下载免费PDF全文
针对位场向下延拓的不适定性,我们将位场向下延拓视为向上延拓的反问题,提出以位场最小曲率作为约束条件来求解稳定的下延位场.我们将剖面位场向上延拓表达式用傅里叶矩阵的形式表示,以矩阵乘法形式给出延拓的表达式,同时向待反演的下延位场引入最小曲率约束,得到向下延拓的最小曲率解,并利用正交变换给出了更为简洁的频率域解.随后,利用Kronecker积将上述全部结果拓展至三维位场,给出了三维位场向下延拓的最小曲率解.此外,我们将位场数据的填充、扩充问题与向下延拓问题统筹考虑,提出一种新的向下延拓迭代格式,该算法面向实际资料处理需求、无须预扩充或填补数据.下延迭代时,对原始数据直接向下延拓,而空白部分利用上一次下延位场估计的上延值替代其空白值并对其向下延拓,直至获得最小曲率约束下稳定的向下延拓结果.同时,我们也讨论了利用改进L曲线和广义交叉验证(GCV)计算正则参数最优估计的问题.对理论模型和实际航空重力资料进行了向下延拓检验,处理结果表明位场向下延拓的最小曲率方法解能满足实际位场资料对向下延拓处理的需求,具有较高的下延精度.  相似文献   

12.
位场曲化平积分方程的迭代解   总被引:3,自引:2,他引:1       下载免费PDF全文
提出了位场曲化平的新方法. 给定观测曲面S上的位场、S对下方水平面P的相对高程,确定P上的位场. 利用由P向上延拓到S的积分式,建立这两个面上位场及相对高程三者所满足的方程,它是第一类Fredholm积分方程. 用Fourier逆变换式把这一空间域积分式化为波数域积分式,再由指数函数的Taylor展开进一步化为级数式. 积分方程的解采用逐次逼近法迭代计算,即用S上的位场观测值作为P上位场的初始迭代值,用导出的级数式求得S上的位场计算值、由S上的位场观测值与计算值之差校正P上的位场,多次迭代,直到满足迭代终止准则. 我们还给出该积分方程的波数域迭代计算方法. 模型算例表明,重力异常曲化平的均方差和磁异常曲化平的均方差分别为0.0008 mGal和0.0019 nT,在主频为2.26 GHz的笔记本电脑运行,2048×2048数据量,计算时间是975 s. 野外磁场实际资料处理也证实这种方法的有效性.  相似文献   

13.
Simulation of induction logging responses in formations with large conductivity contrasts is an important but challenging problem due to the singularity of a linear system caused by large contrasts. Also, three‐dimensional (3D) analysis of complex geophysical structures usually encounters high computational demands. In this paper, a pre‐corrected fast Fourier transform (pFFT)‐accelerated integral equation method is applied to overcome these difficulties. In the approach, the entire formation is included in the solution domain. The volume integral equation is set up in the region based on the fact that the total field is the summation of the excitation field and the secondary field. The emitted field by the transmitter coil (treated as a magnetic dipole) is regarded as the excitation of the system. Then the method of moments (MoM) is used to solve the integral equation. To reduce the high computational requirements of the MoM, the pFFT method is used to speed up the solution of the matrix equation and reduce the memory requirement as well. The resultant method is capable of computing induction logging problems involving large and complex formations. For problems with high conductivity contrasts, the solution of the matrix equation usually converges very slow or even fails to converge due to the large condition number of the coefficient matrix. To overcome this difficulty, an incomplete LU pre‐conditioner is used to significantly speed up the convergence of the matrix equation, thus further reducing the computation time. Numerical results show that the present method is efficient and flexible for 3D simulation of induction logging and is specifically superior for problems with high conductivity contrasts.  相似文献   

14.
位场数据曲化平是位场数据处理解释中的重要运算,但是它的计算量和计算的复杂性影响了它在许多处理和解释方法技术中的应用.本文提出一种位场数据曲化平的迭代方法,即通过把位场数据曲化平视为平面位场数据向上延拓的反问题,得到曲化平的线性积分方程,再把曲面上位场数据视为曲面平均高程面上的位场数据,利用向下延拓的波数域广义逆算法把平均高程面上的位场数据向下延拓到设定平面上,再根据曲面和其平均高程面的相对起伏对设定平面上的向下延拓数据进行起伏校正,最后再把所得平面上的位场数据向上延拓得到曲面上的位场数据,并进行迭代.把这种方法用于三维理论模型数据和实际磁场数据的曲化平处理均获得了理想的结果.  相似文献   

15.
二维频率空间域的数值模拟方法具有以下的优势:多炮模拟时,计算成本比时间域方法低;无累计误差;在地震反演中处理多震源模拟时,只需要有限的几个频率就可以得到好的反演结果.差分离散化形成的稀疏系数矩阵,需要求解一个巨大规模的线性方程组,最大瓶颈是需要海量的计算机内存,导致计算量庞大.本文在前人研究的基础上,采用嵌套剖分网格排序法,极大限度减少对计算机内存的需求,从而减少了计算量.针对弹性波数值模拟的特征,提出二维频率空间域弹性波多炮模拟的快速计算流程.数值模拟试验证明使用嵌套剖分排序法的弹性波多炮数值模拟比压缩存储法具有节省存储量、计算效率高等优势,为后续的二维频率空间域弹性波全波形反演奠定了很好的基础.  相似文献   

16.
实现了基于图法的稀疏正定系统的求解,并在此基础上实现了具有Toeplitz结构的大型稀疏矩阵的快速LU分解,在基于波边方程的地震数据处理如地震波场模拟和叠前深度偏移等隐式方法中,拉普拉氏算子或亥姆霍兹算子的快速分解是这些方法能否实现的关键,在螺旋边界条件下,这些算子的表示矩阵是具有Toeplitz结构的正定厄密矩阵,可以通过本文方法实现快速分解。  相似文献   

17.
边界积分方程用于电阻率Zohdy反演的初步研究   总被引:8,自引:2,他引:6  
研究利用边界积分方程进行电阻率Zohdy反演的有关技术,结果表明在探测区域划分为数千个单元的情况下,为节省正、反演过程中所需要的计算机内存和 CPU时间,可采取以下措施:(1)假定电位分块线性变化,可以使节点数目显著减少,这里每一块都包含若干个单元;(2)利用边界积分方程的特点,可事先计算并存储所有必要的边界积分值,供每一步迭代中调用;(3)利用边界积分方程所特有的数值延拓功能,可以进一步减少节点数目.为了说明这些手段的有效性,先给出了一个数值模拟成像结果,它清楚地表明基于边界积分方程的电阻率 Zohdy反演是快速而有效的,然后给出一个实测剖面的成像实例,成像结果经钻孔检验正确.  相似文献   

18.
A three‐dimensional (3D) electrical resistivity modelling code is developed to interpret surface and subsurface data. Based on the integral equation, it calculates the charge density caused by conductivity gradients at each interface of the mesh, allowing the estimation of the potential everywhere without the need to interpolate between nodes. Modelling generates a huge matrix, made up of Green's functions, which is stored by using the method of pyramidal compression. The potential is compared with the analytical and the numerical solutions obtained by finite‐difference codes for two models: the two‐layer case and the vertical contact case. The integral method is more accurate around the source point and at the limits of the domain for the potential calculation using a pole‐pole array. A technique is proposed to calculate the sensitivity (Jacobian) and Hessian matrices in 3D. The sensitivity is based on the derivative with respect to the block conductivity of the potential computed using the integral equation; it is only necessary to compute the electrical field at the source location. A direct extension of this technique allows the determination of the second derivatives. The technique is compared with the analytical solutions and with the calculation of the sensitivity according to the method using the inner product of the current densities calculated at the source and receiver points. Results are very accurate when the Green's function that includes the source image is used. The calculation of the three components of the electric field on the interfaces of the mesh is carried out simultaneously and quickly, using matrix compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号