首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量 (precipitable water vapor, PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地面和高空比湿,结合温度、风等物理量分析3次暴雨天气过程中的大尺度水汽输送和中尺度局地辐合作用;对最大降水强度以及降水量的时间变化的分析表明:3次降水落区分布特征与降水前期大气柱水汽含量高值的水平分布较为一致;大气柱水汽含量曲线变化特征与各尺度天气系统造成的水汽输送和水汽辐合密切相关,大气柱水汽含量的大小与水汽来源密切相关;降水前4小时内大气柱水汽含量出现陡增,线性增速大于1.1 mm/h,最大降水强度出现在大气柱水汽含量峰值出现后的1~2 h。  相似文献   

2.
基于地基GPS遥感的大连地区大气水汽总量变化特征   总被引:1,自引:0,他引:1  
基于大连地区地基GPS综合观测网遥感反演了大气水汽总量(PWV),分析了大连地区PWV空间变化、逐月变化和日变化特征以及PWV变化与降水的关系,并利用大连本站2005-2011年的探空资料拟合了大连地区地面温度和大气加权平均温度的关系。结果表明:大连本站的PWV与探空积分的水汽含量相关系数达到0.988,均方根误差为2.5 mm。大连地区PWV南北分布比较均匀;PWV最大的月份为7-8月,最大月平均值约40 mm,PWV最小的月份为1月,最小月平均值小于4 mm;大连地区PWV春季和冬季日变化幅度约0.5 mm,夏季和秋季日变化幅度约1.3 mm。夏季和秋季的PWV日变化呈单峰型,春季和冬季的PWV日变化呈多峰型; 在降水发生前8 h 大气水汽总量有明显增加过程,对降水的发生有指示作用。  相似文献   

3.
河北地区大气水汽含量分布特征及其变化趋势的初步分析   总被引:1,自引:0,他引:1  
利用河北邢台、张家口两个常规探空站1974—2000年高空气象要素资料,计算了大气中的水汽含量,分析了河北区域大气水汽含量的27年变化趋势,讨论了河北区域大气水汽含量的时空分布特征。计算结果表明,河北地区大气水汽含量的年变化总体上呈现了微弱的增加趋势,但变率不大;河北地区大气水汽含量四季变化明显,其中,夏季水汽含量最大,秋季次之,春季再次,冬季最小;90%以上的水汽集中在对流层中下部,即500hPa以下;与同期相比,河北南部大气水汽含量大于北部地区,年平均大气水汽含量自南向北递减率为1.94mm/纬距。  相似文献   

4.
地基GPS遥感观测北京地区水汽变化特征   总被引:6,自引:1,他引:5       下载免费PDF全文
利用2004—2007年SA34(北京大学)站的GPS观测数据,运用GAMIT软件解算反演了间隔30min的连续变化大气水汽总量(PW)。与北京南郊观测场得到的探空结果作比较,均方根误差(RMSE)在2~3mm之间。通过对大气水汽作月平均,得到每月的大气水汽总量口变化曲线,并初步分析了夏季水汽日变化与地面比湿、降水、地面气温以及地面风矢量的关系。结果表明:北京地区夏季7月大气水汽总量最小值出现在08:00(北京时)左右,8月大气水汽总量最小值出现在08:00到12:00左右(各年表现出一定的差异),夏季大气水汽总量的最大值出现在01:00到03:00;7月和8月的日变化在夜间变化趋势有所不同;大气水汽总量最大值出现时刻与地面小时降水有一定相关性,且大气水汽总量的日变化明显受风矢量日变化的影响。通过对大气水汽总量的时间序列进行小波分析,得到1年大部分时间里,水汽变化存在大约12d的周期。采用前期的大气水汽总量平均值和短时大气水汽总量增量两个条件进行降水的判断,认为夏季降水的出现时刻与差值的高值区有比较好的对应。  相似文献   

5.
利用2000-2009年南昌、赣州两个探空站资料,通过计算大气水汽含量和水汽通量,对江西省空中水汽含量变化、分布、水汽输送等特征进行了分析。结果表明,近10年来,江西省平均大气水汽含量为35.04 kg/m2,水汽含量呈下降趋势。水汽含量夏季丰富,冬季匮乏,2-6月是江西大气中水汽含量主要增长期,最大值出现在8月,最小出现在1月或12月;空间上呈现南多北少分布。水汽输送在春、冬季以纬向输送为主,夏、秋季经向和纬向输送量基本相当。  相似文献   

6.
利用2016年12月1日~2017年11月30日,地基微波辐射计、L波段探空资料和地面常规气象资料,对四川盆地的水汽和云液态水进行了初步分析。结果表明:(1)探空与微波辐射计反演的水汽含量差值为0.558cm,相关系数为0.787,且通过了α=0.01显著性检验,微波辐射计反演的水汽含量是可信的。(2)基于地基微波辐射计分析四川盆地水汽和云液态水含量的变化特征,可以得出,夏季水汽含量最多,秋季云液态水含量最多;最大值出现在夜晚,最小值出现在白天,夜晚值大于白天。水汽含量和云液态水含量最大值和最小值时间间隔秋季最长(均为16小时),冬季最短(分别为9小时、10小时);水汽含量日较差在秋季最大(1.096cm),冬季最小(0.489cm),云液态水含量日较差在夏季最大(0.908mm),冬季最小(0.311mm)。水汽含量与降水、温度的月变化特征为显著性正相关,相关系数分别为0.842和0.915;与温度日变化特征在春、秋季的11:00~次日01:00为显著性正相关,白天相关性大于夜晚,在夏季01:00~13:00为显著性负相关,日出前相关性最高。(3)水汽和云液态水含量在降水过程开始前1~2h有明显的波动上升,降水结束后,水汽和云液态水含量迅速减少,水汽和云液态水的变化特征对降水天气的预报具有指示意义。   相似文献   

7.
利用青海省4个探空站和NCEP格点站的大气水汽含量及对应地面站温度和降水资料,对比分析青海高原不同气候区的大气水汽含量及其与气温、降水之间的相互关系。结果表明:青藏高原地区NCEP水汽含量与L波段探空估算的水汽含量变化趋势基本一致。4站大气水汽含量的季节和旬变化特征有明显差异,测站海拔越低大气水汽含量越高且与所处地理位置和地形有关,测站海拔越高时大气水汽含量与大气环流和天气系统密切相关。大于10 mm降水与水汽含量呈正比关系,水汽转化为降水的转化率较高;小降水和无降水与水汽含量关系不明确,水汽转化为降水的转化率较低。虽然降水与温度和水汽含量有一定的正比关系,但青海高原地区降水的产生过程复杂,因而不能用温度和大气水汽含量完全确定能否产生降水。  相似文献   

8.
基于地基GPS探测水汽的原理,利用2016年陆态网的站点数据,对北京十三陵、福建武夷山、内蒙古乌拉特后旗、黑龙江绥阳、新疆若羌和云南东川6个站点GPS反演大气可降水量(GPS/PWV)的时间变化以及在典型月(1、4、7、10月)的空间分布变化进行了分析。结果表明:GPS/PWV具有显著的季节分布规律,周期性较强,3—5月为GPS/PWV的快速上升阶段;6—8月达到最大,最大值约80 mm;9—11月为GPS/PWV快速下降阶段;12月—次年1月为全年的最低阶段,基本在30 mm以下。6个站点GPS/PWV的逐小时变化也具有一定的周期性,最大值出现在20时,最小值出现在06—08时。在典型月,水汽含量的空间分布主要集中在华中、华南、华东地区,其余地区变化幅度较小,并且随着纬度的增加而下降,随着经度的增加而上升。  相似文献   

9.
兰州市空中水汽含量和水汽通量变化研究   总被引:3,自引:0,他引:3  
利用历年的高空和地面资料,深入分析了兰州市空中水汽含量和水汽通量的变化特征。结果表明:(1)夏季空中水汽含量和水汽输送相对较多,冬季相对较少;2~7月是水汽含量的增长期,9~1月是递减期,8月与7月持平;97%的水汽集中在400 hPa以下;(2)兰州市空中水汽变化与降水量、降水日数、气温的变化有明显的一致性,也存在一定的差别;(3)兰州市空中水汽输送强度中心接近500hPa高度;冬季水汽日变化最大层位于700~600 hPa,这与我国东部地区空中水汽输送高度和边界层水汽日变化特征有明显的区别。  相似文献   

10.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号