首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The volcanic rocks of the Bearpaw Mountains are part of theMontana high-potassium province, emplaced through Archaean rocksof the Wyoming Craton between 54 and 50 Ma ago. Extrusive rocks,dominated by minettes and latites, have a volume of 825 km3.The minettes range in composition from 20 to 6% MgO. The moremagnesian varieties contain the phenocryst assemblage forsterite+ Cr-spinel + diopside phlogopite. More evolved rocks areolivine-free, with an assemblage of either salite + phlogopite+ pseudoleucite or salite + phlogopite + analcime. The analcimeis thought to be secondary after leucite, produced by loss ofpotassium from the minettes. Mineral chemistry and textures,especially of clinopyroxenes, indicate that mixing between minettemagmas of varying degrees of evolution was commonplace. Compositionalvariation was further extended by accumulation of olivine +spinel + clinopyroxene phenocrysts, and by the preservationof mantle xenocrysts in the minettes. The primary minette magmasare inferred to have had 12–14% MgO and to have been generatedat 30 kb from an olivine + diopside + phlogopite-bearing source.The primary magmas evolved dominantly by fractionation of olivine+ diopside. The minettes have high contents of large ion lithophile elements(LILE) and light rare earth elements (LREE), with K2O up to6.18%, Ba 5491 ppm, Sr 2291 ppm, and Ce 99 ppm. (87Sr/86Sr)0ranges from 0.707 to 0.710 and Nd varies from –10 to–16. These data, plus high LILE/HFSE (high field strengthelements) values, are interpreted to show that the minettescontain at least three different mantle components. The lithospherewas initially depleted in Archaean times, but was metasomaticallyenriched in the Proterozoic and in the late Cretaceous and earlyTertiary. The latites have many chemical features in common with the minettes,such as potassic character and high LILE/HFSE values. They formedby fractional crystallization of minette magma in combinationwith assimilation of crustal rocks; this process enriched themagmas in SiO2 and raised Na2O/K2O and 87Sr/86Sr values. Chemicaldata for phenocrysts and bulk rocks in minettes suggest mixingbetween minette and latite magmas.  相似文献   

2.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

3.
Petrology and Geochemistry of Mantle Peridotite Xenoliths from SE China   总被引:11,自引:2,他引:9  
Geochemical data on Type I spinel peridotite and garnet peridotitexenoliths in Cenozoic basalts from SE China demonstrate thatthe lithospheric mantle under this region is heterogeneous.The depletion and enrichment shown by these peridotite xenolithsare not related to their locations as suggested earlier. Samplesfrom individual localities, at the continental margin or thecontinental interior, show large variational ranges from depletedharzburgite to fertile Iherzolite. The measured Nd and Sr isotopiccompositions of clinopyroxene separates range from Nd 49 to160 and from 87Sr/86Sr 070256 to 070407, respectively. Thedepleted signatures of Sr and Nd isotopic compositions and major-elementcontents (low CaO and Al2O3 in most xenoliths require an olddepletion event, probably mid-Proterozftic, and the enrichmentof LREE in the depleted peridotites implies a young metasomaticevent shortly before Cenozoic magmatism. Major-element compositionsof the peridotite xenoliths are controlled largely by the degreeof partial melting, and the extra fertile peridotites (highCaO and Al2O3) are probably the products of interaction betweenperidotites and a basaltic component. The equilibrium P–Tconditions, determined from coexisting mineral phases, indicatethat these xenoliths equilibrated over a wide P–T range,from 770 to 1250 C and from 10 to 27 kbar. Calculated oxygenfugacities for most spinel peridotites range from near the FMQbuffer to 25 log units below. The late-stage metasomatism didnot change the redox state in the upper mantle. *Corraponding author  相似文献   

4.
Buhlmann et al. (Can J Earth Sci 37: 1629–1650, 2000) studied the minettes and xenoliths from the Milk River area of southern Alberta, Canada. Based on previous work, they hypothesized that the minettes were derived from a source containing phlogopite?+?clinopyroxene?±?olivine, at pressures ≥1.7?GPa. To test this hypothesis, liquidus experiments were performed on a primitive minette between 1.33 and 2.21?GPa and between 1,300 and 1,400?°C to constrain the mineralogy of its source region. We found a multiple saturation point along the liquidus at 1.77 GPa and 1,350?°C, where the liquid coexists with orthopyroxene and olivine. Neither phlogopite nor clinopyroxene were found to be liquidus phases, which is inconsistent with Buhlmann et al.’s hypothesis. We suggest that our minette is not primary, but had re-equilibrated with harzburgitic mantle subsequent to formation. In such a scenario, partial melting of a veined source containing mica and clinopyroxene occurred at or near the base of the Wyoming craton (~200?km). Minimal heating or the introduction of hydrous fluids into the source would be required to induce partial melting. Rapid ascent rates, coupled with slow cooling rates, of the “primary minette magma” would preserve the high temperature observed in our experiments. At ~58?km, our “primary minette magma” likely stalled and re-equilibrated with the harzburgite surroundings.  相似文献   

5.
Composite dykes consisting of leucominette and dacite as wellas discrete dykes and flows of minette and lamproite composition,occur in the Veliki Majdan area, western Serbia. This area ispart of the Serbian Tertiary magmatic province, which consistsof numerous small occurrences of ultrapotassic igneous rocks.The composite dykes have leucominette margins (up to 150 cmthick) enclosing a central part of dacite up to 100 m in width.Between these two lithologies, a decimetre-sized transitionzone may occur. Petrography, mineral chemistry and bulk-rockgeochemistry, including Sr, Nd and Pb isotopes, provide evidencethat the minettes and leucominettes formed by hybridizationbetween a felsic magma similar in composition to dacite anda mantle-derived lamproitic magma. The leucominettes and minettescontain all phenocryst types (biotite, plagioclase, quartz)present in the dacites, but in partly resorbed and reacted form.The mica displays a great diversity of resorption textures asa result of partial dissolution, incipient melting and phlogopitization,suggesting superheating of the felsic melt during hybridization;the mineral modes and mineral compositions of the leucominettesand minettes resemble those in the lamproites. A model for themodification of lamproite melt towards minette is presentedin which minette is formed by mixing of lamproite and <30%felsic magma. The lack of any significant correlation betweenPb isotopic ratios and some of the ‘mixing-indices’(SiO2, Zr, Zr/Nb, 143Nd/144Ndi) recognized in the hybridizationmodel for the Veliki Majdan dykes may be a result of similarityof the Pb-isotopic signature in the two end-members. Highlyphlogopitized biotite xenocrysts in the minettes are ascribedto the retention of volatile components after magma mixing andcrystallization of a new generation of phlogopite from the hybridizedmagma. The magma-mixing model explains the reverse zoning andresorption features of phlogopite macrocrysts commonly recognizedin calcalkaline lamprophyres elsewhere. Therefore, this mixingmechanism may be globally applicable for the origin of minettesassociated with calcalkaline granitic plutonism in post-orogenicsettings. KEY WORDS: Serbia; lamproites; micas; phlogopitization; calcalkaline lamprophyres; superheating; magma mixing  相似文献   

6.
Spinel peridotite xenoliths found in the Monte Vulture carbonatite-melilitite volcano have been derived from the subcontinental lithospheric mantle beneath central southern Italy. Clinopyroxene-poor lherzolites and harzburgites are the most common rock types, with subordinate wehrlites and dunites. Small quantities of phlogopite and carbonate are present in a few samples. The peridotites record a large degree of partial melting and have experienced subsequent enrichment which has increased their LILE and LREE contents, but in most cases their HFSE contents are low. Despite being carried to the surface by a carbonatite-melilitite host, the whole-rock and clinopyroxene compositions of the xenoliths have a trace-element signature more closely resembling that of silicate-melt metasomatised mantle rather than carbonatite-metasomatised peridotites. 87Sr/86Sr and 143Nd/144Nd isotopic ratios for clinopyroxene from the Vulture peridotites are 0.7042-0.7058 and 0.51260-0.5131 respectively. They form a trend away from the depleted mantle to the composition of the host magmas, and show a significant enrichment in 87Sr/86Sr compared with most European mantle samples. The mantle beneath Monte Vulture has had a complex evolution - we propose that the lithosphere had already undergone extensive partial melting before being affected by metasomatism from a silicate melt which may have been subduction-related.  相似文献   

7.
Ultramafic xenoliths from alkali basalts in the Perjani Mountainsin the Eastern Transylvanian Basin (ETB) of Romania are mainlyspinel Iherzolites, although spinel harzburgites, websterites,clinopyroxenites and amphibole pyroxenites are also present.Amphibole veins cut some spinel peridotite samples. All arederived from the shallow lithospheric upper mantle. In general,textural variations are restricted to protogranular and porphyroclastictypes, compared with the more varied textures found in mantlexenoliths from the alkali basalts of the neighbouring PannonianBasin. Also, ETB peridotites are richer in amphibole. Thus,the mantle beneath the edge of the ETB is less deformed butmore strongly metasomatized than the mantle closer to the centreof the Pannonian Basin.Mineralogical and bulk-rock geochemicalvariations resemble those of spinel Iherzolites from other sub-continentalshallow mantle xenolith suites. There is no apparent correlationbetween deformation and geochemistry, and much of the majorand trace element variation is due to variable extraction ofpicritic melts. The REE patterns of separated clinopyroxenesfrom the peridotite xenoliths are mostly LREE depleted, althoughclinopyroxenes from regions adjacent to amphibole veins haveexperienced an enrichment in La and Ce and a change in theirSr and Nd isotopic values towards those of the vein, while stillretaining an overall LREE depletion. Clinopyroxenes from thewebsterites and clinopyroxenites are more variable. Amphibolein the hydrous pyroxenites and amphibole veins is strongly LREEenriched and is considered to be metasomatic in origin. 87Sr/86Srand 143Nd/l44Nd isotopic ratios of the xenoliths vary between07018 and 07044, and 051355 and 0 51275, respectively. Thesevalue are more depleted than those obtained for xenoliths fromthe Pannonian Basin. The lower l43Nd/l44Nd and higher 87Sr/Sr86values are found in anhydrous pyroxenites, metasomatic amphibolesin veins and amphibole pyroxenites, and in the only exampleof an equigranular spinel Iherzolite in the suite.The ETB xenolithswere brought to the surface in alkaline vokanism which post-dateda period of Miocene to Pliocene subduction-related cak-alkalinevolcanism. However, the effects of the passage of either slab-derivedfluids or cak-alkaline magmas through the ETB lithospheric mantlecannot be discerned in the chemistry of the xenoliths. The metasomaticamphibole has 87Sr/Sr86 and 143Sr/Sr144 ratios similar to thehost alkali basalts, but the least evoked cak-alkaline magmasalso have similar Sr and Nd isotope compositions. The REE patternsof the amphibole resembk those of amphiboles considered to havecrystallized from alkaline melts. No preferential enrichmentin elements typically associated with slab-derivedfluids (K,Rb and Sr) relative to elements typically depleted in cak-alkalinemagmas (Ti, 2jr and Nb) has been observed in the vein amphiboles,although some interstitial amphibole is depleted in all incompatibletrace elements, including LREE. Thus, despite its position closeto the calc-alkaline volcanic arc of the Eastern Carpathians,we cannot readily detect any interaction between the lithosphericupper mantle beneath the ETB and subduction-related magmas orfluids. Metasomatism in the lithospheric mantle is instead largelyrelated to the passage of a primitive alkaline magma similarto the host alkali basal *corresponding author  相似文献   

8.
Trace element evidence indicates that at the Buell Park diatreme, Navajo volcanic field, the felsic minette can be best explained by crystal fractionation from a potassic magma similar in composition to the mafic minettes. Compatible trace element (Cr, Ni, Sc) abundances decrease while concentrations of most incompatible elements (Ce, Yb, Rb, Ba, Sr) remain constant or increase from mafic to felsic minette. In particular, the nearly constant Ce/Yb ratio of the minettes combined with the decrease in Cr, Ni, and Sc abundances from mafic to felsic minette is inconsistent with a model of varying amounts of partial melting as the process to explain minette compositions. The uniformity of rare earth element (REE) abundances in all the minettes requires that an accessory mineral, apatite, dominated the geochemistry of the REE during fractionation. A decrease in P2O5 from mafic to felsic minette and the presence of apatite in cognate inclusions are also consistent with apatite fractionation. Higher initial87Sr/86Sr ratios in the felsic minettes relative to the proposed parental mafic minettes, however, is inconsistent with a simple fractionation model. Also, a separated phlogopite has a higher initial87Sr/86Sr ratio than host minette. These anomalous isotopic features probably reflect interaction of minette magma with crust.The associated ultramafic breccia at Buell Park is one of the Navajo kimberlites, but REE concentrations of the matrix do not support the kimberlite classification. Although the matrix of the breccia is enriched in the light REE relative to chondrites, and has high La, Rb, Ba, and Sr concentrations relative to peridotites, the concentrations of these elements are significantly lower than in South African kimberlites. A high initial87Sr/86Sr ratio combined with petrographic evidence of ubiquitous crustal xenoliths in the Navajo kimberlites suggests that the relatively high incompatible element concentrations are due to a crustal component. Apparently, Navajo kimberlites are most likely a mixture of comminuted mantle wall rock and crustal material; there is no evidence for an incompatible element-rich magma which is characteristic of South African kimberlites.If the mafic minettes are primary magmas derived from a garnet peridotite source with chondritic REE abundances, then REE geochemistry requires very small (less than 1%) degrees of melting to explain the minettes. Alternatively, the minettes could have formed by a larger degree of melting of a metasomatized, relatively light REE-enriched garnet peridotite. The important role of phlogopite and apatite in the differentiation of the minettes supports this latter hypothesis.  相似文献   

9.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr = 0.7031–0.7048, 143Nd/144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events.  相似文献   

10.
Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm–Nd and Lu–Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic—a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths.

The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous–early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm–Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger “ages” suggesting that the metasomatism occurred during the Laramide. Highly variable Rb–Sr and Lu–Hf mineral “ages” for these same samples suggest that the Homestead peridotites did not achieve intermineral equilibrium during this metasomatism. This indicates that the metasomatic overprint likely was introduced shortly before kimberlite eruption through interaction of the peridotites with the host kimberlite, or petrogenetically similar magmas, in the Wyoming Craton lithosphere.  相似文献   


11.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

12.
Melting experiments were conducted on a mica–clinopyroxenite xenolith brought up in a minette dyke in southern Alberta, Canada, near Milk River. Both the minettes and mica–clinopyroxenite xenoliths were studied by Buhlmann et al. (Can J Earth Sci 37:1629–1650, 2000), who hypothesized that the minettes formed by partial melting of a mantle source containing clinopyroxene + phlogopite ± olivine, at pressures ≥1.7 GPa. In liquidus experiments performed on the most primitive minette in our previous study (Funk and Luth in Contrib Mineral Petrol 164:999–1009, 2012), we found a multiple saturation point where olivine and orthopyroxene coexisted with liquid at 1.77 GPa and 1,350 °C. We argued that the minette originally formed by partial melting of clinopyroxene + phlogopite, but had re-equilibrated with a harzburgite during ascent. In the current study, we wanted to test both the source region hypothesis of Buhlmann et al. and our re-equilibration hypothesis by studying the near-solidus phase equilibria of a mica + clinopyroxene assemblage. We found the solidus for our xenolith has a steep slope in P–T space and lies at temperatures above those of a normal cratonic geotherm, implying that this mica–clinopyroxenite is stable in the cratonic mantle. Melting could occur at greater depths, where the solidus is extrapolated to cross the geotherm or must be induced either by raising the temperatures of the surrounding rocks or by introducing hydrous fluids into the source. Our melts are in equilibrium with clinopyroxene and olivine. The compositions of the liquids derived from melting this xenolith are similar to madupitic lamproites from the Leucite Hills, Wyoming, studied by Carmichael (Contrib Mineral Petrol 15:24–66, 1967) and Barton and Hamilton (Contrib Mineral Petrol 66:41–49, 1978; Contrib Mineral Petrol 69:133–142, 1979). Barton and Hamilton (Contrib Mineral Petrol 69:133–142, 1979) proposed that the madupitic lamproites may have come from a source containing mica and pyroxene. This study supports their hypothesis. The composition of the most primitive minette from southern Alberta lies between our experimental melt and a population of representative mantle orthopyroxenes. We conclude from our study that the Milk River minettes were likely derived from a source containing phlogopite, clinopyroxene and trace amounts of apatite, which formed olivine upon melting. During ascent, the melts changed composition by reacting with orthopyroxene.  相似文献   

13.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

14.
Mantle peridotites from the Erro–Tobbio (ET) ophioliticunit (Voltri Massif, Ligurian Alps) record a tectono-metamorphicdecompressional evolution, indicated by re-equilibration fromspinel- to plagioclase- to amphibole-facies conditions, andprogressive deformation from granular to tectonite to mylonitefabrics. The peridotites are considered to represent subcontinentallithospheric mantle that was tectonically denuded during riftingand opening of the Jurassic Ligurian Tethys ocean, similar tothe Northern Apennine (External Ligurides) ophiolitic peridotites.We performed chemical and isotopic investigations on selectedgranular and tectonite spinel peridotites and plagioclase tectonitesand mylonites, with the aim of defining the nature of the mantleprotoliths, and to date the onset of exhumation of the ET peridotites.Spinel- and plagioclase-bearing tectonites and mylonites exhibitheterogeneous bulk-rock major and trace element composition,despite rather homogeneous mineral chemistry, thus indicatingthat the ET mantle protoliths record a composite history ofpartial melting and melt migration by reactive porous flow.The lack of correlation between the observed geochemical heterogeneityand the structural type (granular, tectonite, mylonite) indicatesthat the inferred reactive porous flow event preceded the exhumation-relatedlithospheric history of the Erro–Tobbio mantle. The tectono-metamorphicevolution caused systematic chemical changes in minerals: (1)Al decrease in orthopyroxene; (2) Al decrease, and Cr and Tiincrease in spinels; (3) Al and Sr decrease, Cr, Ti, Zr, Sc,V and middle to heavy rare earth element increase and developmentof a negative Eu anomaly in clinopyroxene. The studied sampleshave Nd isotope compositions consistent with a mid-ocean ridgebasalt mantle reservoir. Sm/Nd isotope data on plagioclase andclinopyroxene separates (and corresponding whole rocks) fromtwo plagioclase peridotites, representative of the plagioclase-bearingmylonitic extensional shear zone, have yielded ages of 273 ±16 Ma and 313 ± 16 Ma, for the plagioclase-facies recrystallizationstage, significantly older than the expected Jurassic age. Thisindicates that the Erro–Tobbio peridotites represent subcontinentallithospheric mantle that was tectonically exhumed from spinel-faciesdepths to shallower lithospheric levels during Late Carboniferous–Permiantimes. Our results are consistent with the previously documentedevidence for an extensional regime in the Europe–Adrialithosphere during Late Palaeozoic time, and they representthe first record that extensional mechanisms were also activeat lithospheric mantle levels. KEY WORDS: plagioclase-bearing peridotites; subcontinental lithospheric mantle; mantle exhumation; Sm/Nd dating  相似文献   

15.
Ultrabasic Xenoliths and Lava from the Lashaine Volcano, Northern Tanzania   总被引:1,自引:3,他引:1  
The Lashaine tuff-ring consists of carbonatite tuff and glassyscoria of ankaramitic composition. The pyroclastics encloseejected blocks of country-rock metamorphic rocks and a suiteof ultramafic blocks which are divisible into two groups. Thefirst group, characterized by xenomorphic granular textures,contains rocks comprising varying combinations of pyrope garnet,spinel, magnesian olivine and orthopyroxene, chromiferous diopside,and phlogopite. Analyses are given for garnet lherzolite, lherzolite,harzburgite, and wehrlite and their separate phases. The chemistryof the garnet lherzolite and its phases resembles that of garnetperidotite nodules in kimberlite diatremes, and the A12O2 contentand Ca/Ca+Mg ratio of the clinopyroxenes in the lherzolite andwehrlite indicate more affinities with those in mantle-derivedrocks rather than with peridotites derived by accumulation froma basaltic melt. The phlogopite in a mica garnet lherzolite,that otherwise resembles other mantle garnet peridotites, isan unusual variety containing > 9 per cent TiO2. The othergroup of ultramafic xenoliths, characterized by cumulate andidiomorphic textures, comprises pyroxenite, with or withoutolivine, mica and amphibole, and mica dunite. Analyses are givenfor a mica dunite and its separate phases. The pressure andtemperature of formation of the various rock-types are estimated,and the relationship of the rocks to each other and to the hostlava is discussed. The chemistry of the host lava is discussedin the light of current experimental data and also in relationto the Northern Tanzania volcanic province. The significanceof the presence of mica in the upper mantle is also discussed.  相似文献   

16.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

17.
Major- and trace-element data on the constituent minerals ofgarnet peridotite xenoliths hosted in early Paleozoic (457–500Ma) kimberlites and Neogene (16–18 Ma) volcanic rockswithin the North China Craton are compared with those from thepre-pilot hole of the Chinese Continental Scientific DrillingProject (CCSD-PP1) in the tectonically exhumed Triassic (220Ma) Sulu ultrahigh-pressure (UHP) terrane along its southernmargin. P–T estimates for the Paleozoic and Neogene peridotitexenoliths reflect different model geotherms corresponding tosurface heat flows of 40 mW/m2 (Paleozoic) and 80 mW/m2 (Neogene).Garnet peridotite xenoliths or xenocrysts from the Paleozoickimberlites are strongly depleted, similar to peridotites fromother areas of cratonic mantle, with magnesium olivine (meanFo92.7), Cr-rich garnet and clinopyroxene with high La/Yb. Garnet(and spinel) peridotite xenoliths hosted in Neogene basaltsare derived from fertile mantle; they have high Al2O3 and TiO2contents, low-Mg-number olivine (mean Fo89.5), low-Cr garnetand diopside with flat rare earth element (REE) patterns. Thedifferences between the Paleozoic and Neogene xenoliths suggestthat a buoyant refractory lithospheric keel present beneaththe eastern North China Craton in Paleozoic times was at leastpartly replaced by younger, hotter and more fertile lithosphericmantle during Mesozoic–Cenozoic times. Garnet peridotitesfrom the Sulu UHP terrane have less magnesian olivine (Fo91.5),and lower-Cr garnet than the Paleozoic xenoliths. The diopsideshave low heavy REE (HREE) contents and sinusoidal to light REE(LREE)-enriched REE patterns. These features, and their highMg/Si and low CaO and Al2O3 contents, indicate that the CCSD-PP1peridotites represent a moderately refractory mantle protolith.Details of mineral chemistry indicate that this protolith experiencedcomplex metasomatism by asthenosphere-derived melts or fluidsin Mesoproterozoic, and subsolidus re-equilibration involvingfluids/melts derived from the subducted Yangtze continentalcrust during UHP metamorphism in the early Mesozoic. Tectonicextension of the subcontinental lithospheric mantle of the NorthChina Craton and exhumation of the Sulu UHP rocks in the earlyMesozoic induced upwelling of the asthenosphere. Peridotitessampled by the Neogene basalts represent newly formed lithospherederived by cooling of the upwelling asthenospheric mantle inJurassic–Cretaceous and Paleogene time. KEY WORDS: garnet peridotite xenoliths; North China Craton; lithospheric thinning; Sulu UHP terrane; UHP lithosphere evolution; mantle replacement  相似文献   

18.
Mantle peridotites of the External Liguride (EL) units (NorthernApennines) represent slices of subcontinental lithospheric mantleemplaced at the surface during early stages of rifting of theJurassic Ligurian Piemontese basin. Petrological, ion probeand isotopic investigations have been used to unravel the natureof their mantle protolith and to constrain the timing and mechanismsof their evolution. EL peridotites are dominantly fertile spinelIherzolites partly recrystallizfd in the plagiodase Iherzplitestability field Clinopyroxenes stable in thespinel-facies assemblagehave nearly fiat REE patterns (CeN/SmN=06–08) at (10–16)C1and high Na, Sr, Ti and Zr contents. Kaersutitic-Ti-pargasiticamphiboles also occur in the spinel-facies assemblage. TheirLREE-depleted REE spectra and very low Sr, Zr and Ba contentsindicate that they crystallized from hydrous fluids with lowconcentrations of incompatible elements. Thermometric estimateson the spinelfacies parageneses yield lithospheric equilibriumtemperatures in the range 1000–1100C, in agreement withthe stability of amphibole, which implies T<1100C. Sr andNd isotopic compositions, determined on carefully handpickedclinopyroxene separates, plot within the depleted end of theMORB field (87Sr/86Sr=070222–070263; 143Nd/144Nd=0513047–0513205)similar to many subcontinental orogenic spinel Iherzolites fromthe western Mediterranean area (e.g. Ivrea Zpne and Lanzfl N).The interpretation of the EL Iherzolites as subcontinental lithosphericmantle is reinforced by the occurrence of one extremely depletedisotopic composition (87Sr/86Sr=0701736; 143Nd/144Nd=0513543).Sr and Nd model ages, calculated assuming both CHUR and DM mantlesources, range between 24 Ga and 780 Ma. In particular, the12-Ga Sr age and the 780-Ma Nd age can be regarded as minimumages of differentiation. The transition from spinel-to plagioclase-faciesassemblage, accompanied by progressive deformation (from granularto tectonite-mylonite textures), indicate that the EL Iherzolitesexperienced a later, subsolidus decompressional evolution, startingfrom subcontinental lithospheric levels. Sm/Nd isochrons onplagioclase-clinopyroxene pairs furnish ages of 165 Ma. Thisearly Jurassic subsolidus decompressional history is consistentwith uplift by means of denudation in response to passive andasymmetric lithospheric extension. This is considered to bethe most suitable geodynamic mechanism to account for the exposureof huge bodies of subcontinental lithospheric mantle duringearly stages of opening of an oceanic basin. *Corresponding author. Present address: Dipartimento di Stienze della Terra, Univenit di Geneva, Corso Europa 26,16132 Genova, Italy  相似文献   

19.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

20.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号